Search
Search ×
Yamal%20fireYamal%20fire

Arctic Report Card: Update for 2021

Rapid and pronounced warming continues to drive the evolution of the Arctic environment

Archive of previous Arctic Report Cards >

2021 Arctic Report Card Home >

Arctic Report Card 2021

Vital Signs

Other Indicators

Frostbites

More Information

Arctic Essays

References

Surface Air Temperature

Avila-Diaz, A., D. H. Bromwich, A. B. Wilson, F. Justino, and S. -H. Wang, 2021: Climate extremes across the North American Arctic in modern reanalyses. J. Climate, 34, 2385-2410, https://doi.org/10.1175/JCLI-D-20-0093.1.

Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971-2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.

Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic Amplification influence on mid-latitude severe winter weather. Nat. Climate Change, 10, 20-29, https://doi.org/10.1038/s41558-019-0662-y.

Dixon, R., 2021: Siberia's wildfires are bigger than all the world's other blazes combined. The Washington Post, https://www.washingtonpost.com/world/2021/08/11/siberia-fires-russia-climate/ (11 August 2021).

Graham, R. M., and Coauthors, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 4121-4143, https://doi.org/10.1175/JCLI-D-18-0643.1.

Grinde, L., J. Mamen, K. Tunheim, and O. E. Tveito, 2020: Klimatologisk oversikt. November 2020, MET info 11/2020 (in Norwegian), ISSN 1894-759X.

Henson, B., and J. Masters, 2021: Western Canada burns and deaths mount after world's most extreme heat wave in modern history. Yale Climate Connections, https://yaleclimateconnections.org/2021/07/western-canada-burns-and-deaths-mount-after-worlds-most-extreme-heat-wave-in-modern-history/ (1 July 2021).

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Moon, T. A., and Coauthors, 2019: The expanding footprint of rapid Arctic change. Earths Future, 7, 212-218, https://doi.org/10.1029/2018EF001088.

Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2021: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset. J. Geophys. Res.-Atmos., 126, e2019JD032352, https://doi.org/10.1029/2019JD032352.

Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29.

SMHI, 2020: November 2020–Värmerekord efter värmerekord. Månadens väder, November 2020 (in Swedish) Published 30 Nov 2020, Updated 17 Feb 2021.

Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.

Terrestrial Snow Cover

Bokhorst, S., and Coauthors, 2016: Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 45, 516-537, https://doi.org/10.1007/s13280-016-0770-0.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219, https://doi.org/10.1175/JHM-D-12-012.1.

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137-142, https://doi.org/10.5194/essd-7-137-2015.

Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci., 4, 151-155, https://doi.org/10.1038/ngeo1062.

Gelaro, R., and Coauthors, 2017: The Modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

GMAO (Global Modeling and Assimilation Office), 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GESDISC), accessed: 11 Aug 2021, https://doi.org/10.5067/RKPHT8KC1Y1T.

Luojus, K., and Coauthors, 2020: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979-2018), version 1.0. Centre for Environmental Data Analysis, accessed: 19 Jul 2021, https://doi.org/10.5285/fa20aaa2060e40cabf5fedce7a9716d0.

Meredith, M., and Coathors, 2019: Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H. -O. Pörtner, and co-editors, in press, https://www.ipcc.ch/srocc/.

Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 1579-1594, https://doi.org/10.5194/tc-14-1579-2020.

Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919-926, https://doi.org/10.1002/2016GL071789.

Mudryk, L., A. Elias Chereque, R. Brown., C. Derksen, K., Luojus, and B. Decharme, 2020a: Terrestrial Snow Cover. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/p6ca-v923.

Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020b: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 2495-2514, https://doi.org/10.5194/tc-14-2495-2020.

Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 11 Aug 2021, https://doi.org/10.24381/cds.e2161bac.

Natali, S. M., and Coauthors, 2019: Large loss of CO2 in winter observed across the northern permafrost region. Nat. Climate Change, 9, 852-857, https://doi.org/10.1038/s41558-019-0592-8.

Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 [r01]. NOAA National Centers for Environmental Information, accessed: 8 Jul 2021, https://doi.org/10.7289/V5N014G9.

U.S. National Ice Center, 2008: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, accessed: 11 Aug 2021, https://doi.org/10.7265/N52R3PMC.

Walvoord, M. A., and B. L. Kurylyk, 2016: Hydrologic impacts of thawing permafrost—a review. Vadose Zone J., 15, vzj2016.01.0010, https://doi.org/10.2136/vzj2016.01.0010.

Greenland Ice Sheet

Alley, R. B., and S. Anandakrishnan, 1995: Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland. Ann. Glaciol., 21, 64-70, https://doi.org/10.3189/S0260305500015615.

Andersen, J. K., and Coauthors, 2019: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999-2018). GEUS Bull., 43, http://doi.org/10.34194/GEUSB-201943-02-02.

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016).GEUS Bull., 38, 53-56, https://doi.org/10.34194/geusb.v38.4414.

IMBIE Team, 2020: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233-239, http://doi.org/10.1038/s41586-019-1855-2.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte and Co-editors], Cambridge University Press, in press.

Kokhanovsky, A., J. E. Box, B. Vandecrux, K. D. Mankoff, M. Lamare, A. Smirnov, and M. Kern, 2020: The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens., 12, 234, https://doi.org/10.3390/rs12020234.

Mankoff, K. D., and Coauthors, 2020a: Greenland liquid water discharge from 1958 through 2019. Earth Syst. Sci. Data, 12, 2811-2841, https://doi.org/10.5194/essd-12-2811-2020.

Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020b: Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367-1383, https://doi.org/10.5194/essd-12-1367-2020.

Mankoff, K. D., and Coauthors, 2021: Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001-5025, https://doi.org/10.5194/essd-13-5001-2021.

Moon, T. A., A. S. Gardner, B. Csatho, I. Parmuzin, and M. A. Fahnestock, 2020: Rapid reconfiguration of the Greenland ice sheet coastal margin. J. Geophys. Res.-Earth, 125, e2020JF005585, https://doi.org/10.1029/2020JF005585.

Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11051-11061, https://doi.org/10.1002/2017GL074954.

Mote, T. L., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.

van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wa, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. GEUS Bull., 35, 71-74, https://doi.org/10.34194/geusb.v35.4942.

Wehrlé, A., J. E. Box, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bull., 47, https://doi.org/10.34194/geusb.v47.5284.

Sea Ice

Cavalieri, D. J., C.L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/8GQ8LZQVL0VL. [Accessed 27 August 2021]

Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883-6900, https://doi.org/10.1002/2017JC012768.

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A.K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, https://doi.org/10.7265/N5K072F8. [Accessed 27 August 2021]

Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens., 52(11), 7233-7246, https://doi.org/10.1109/TGRS.2014.2310136.

Kern, S., T. Lavergne, D. Notz, L. T. Pedersen, R. T. Tonboe, R. Saldo, and A. M. Sørensen, 2019: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations. Cryosphere, 13, 3261-3307, https://doi.org/10.5194/tc-13-3261-2019.

Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49-78, https://doi.org/10.5194/tc-13-49-2019.

Maslanik, J., and J. Stroeve, 1999: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/U8C09DWVX9LM. [Accessed 27 August 2021]

Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res.-Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.

Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017.

Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: EASE-Grid Sea Ice Age, Version 4. [March, 1984-2020]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/UTAV7490FEPB. [Accessed 1 September 2021]

Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook Arctic Weekly EASE-Grid Sea Ice Age, Version 1. [March, 2021]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/2XXGZY3DUGNQ. [Accessed 1 September 2021]

Sea Surface Temperature

Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Climate Change, 8, 634-639, https://doi.org/10.1038/s41558-018-0205-y.

Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. [1982-2021]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/efmz-2t65.

Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. [1982-2021], https://doi.org/10.7265/tgam-yv28.

Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318, https://doi.org/10.5194/essd-5-311-2013.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, and see http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res.-Oceans, 120, 7223-7236, https://doi.org/10.1002/2015JC011005.

Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline

Ardyna, M., M. Babin, E. Devred, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132, https://doi.org/10.1002/lno.10554.

Ardyna, M., and Coauthors, 2020: Under-ice phytoplankton blooms: Shedding light on the "invisible" part of Arctic primary production. Front. Mar. Sci., 7, 608032, https://doi.org/10.3389/fmars.2020.608032.

Behrenfeld, M. J., and E. Boss, 2006: Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J. Mar. Res., 64, 431-451, https://doi.org/10.1357/002224006778189563.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20, https://doi.org/10.4319/lo.1997.42.1.0001.

Bouman, H. A., T. Jackson, S. Sathyendranath, and T. Platt, 2020: Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean. Philos. Trans. Roy. Soc. A, 378, 20190351, https://doi.org/10.1098/rsta.2019.0351.

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea level: Effects on physicochemical parameters. Climate and Fresh Water Toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany, https://doi.org/10.1515/9783110333596-003.

Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Oceans, 122, 6883-6900, https://doi.org/10.1002/2017JC012768.

Crawford, A. D., K. M. Krumhardt, N. S. Lovenduski, G. L. Van Dijken, and K. R. Arrigo, 2020: Summer high-wind events and phytoplankton productivity in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2020JC016565, https://doi.org/10.1029/2020jc016565.

Duffy-Anderson, J. T., and Coauthors, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46, 9833-9842, https://doi.org/10.1029/2019GL083396.

Filbee-Dexter, K., T. Wernberg, S. Fredriksen, K. M. Norderhaug, and M. F. Pedersen, 2019: Arctic kelp forests: Diversity, resilience and future. Global Planet. Change, 172, 1-14, https://doi.org/10.1016/j.gloplacha.2018.09.005.

Garcia-Eidell, C., J. C. Comiso, M. Berkelhammer, and L. Stock, 2021: Interrelationships of sea surface salinity, chlorophyll-a concentration, and sea surface temperature near the Antarctic ice edge. J. Climate, 34(15), 6069-6086, https://doi.org/10.1175/JCLI-D-20-0716.1.

Giesbrecht, K. E., D. E. Varela, J. Wiktor, J. M. Grebmeier, B. Kelly, and J. E. Long, 2019: A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep-Sea Res. Pt. II, 162, 93-113, https://doi.org/10.1016/j.dsr2.2018.06.010.

Goldsmit, J., and Coauthors, 2021: Kelp in the eastern Canadian Arctic: Current and future predictions of habitat suitability and cover. Front. Mar. Sci., 18, 742209, https://doi.org/10.3389/fmars.2021.742209.

Henley, S. F., M. Porter, L. Hobbs, J. Braun, R. Guillaume-Castel, E. J. Venables, E. Dumont, and F. Cottier, 2020: Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers. Philos. T. Roy. Soc. A, 378(2181), 20190361, http://doi.org/10.1098/rsta.2019.0361.

Hill, V., M. Ardyna, S. H. Lee, and D. E. Varela, 2018: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Res. Pt. II, 152, 82-94, https://doi.org/10.1016/j.dsr2.2016.12.015.

Hölemann, J. A., B. Juhls, D. Bauch, M. Janout, B. P. Koch, and B. Heim, 2021: The impact of the freeze-melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian Seas (Siberian Arctic). Biogeosciences, 18, 3637-3655, https://doi.org/10.5194/bg-18-3637-2021.

Hopwood, M. J., and Coauthors, 2020: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere, 14, 1347-1383, https://doi.org/10.5194/tc-14-1347-2020.

Kim, H. -J., and Coauthors, 2021: Temporal and spatial variations in particle fluxes on the Chukchi Sea and East Siberian Sea slopes from 2017 to 2018. Front. Mar. Sci., 7, 609748, https://doi.org/10.3389/fmars.2020.609748.

Lalande, C., J. M. Grebmeier, R. R. Hopcroft, and S. L. Danielson, 2020: Annual cycle of export fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea. Deep-Sea Res. Pt. II, 177, 104730, https://doi.org/10.1016/j.dsr2.2020.104730.

Lalande, C., J. M. Grebmeier, A. M. P. McDonnell, R. R. Hopcroft, S. O'Daly, and S. L. Danielson, 2021: Impact of a warm anomaly in the Pacific Arctic region derived from time-series export fluxes. PLoS ONE, 16(8), e0255837, https://doi.org/10.1371/journal.pone.0255837.

Lalande, C., E. -M. Nöthig, and L. Fortier, 2019: Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett., 46, 5959-5967, https://doi.org/10.1029/2019gl083167.

Lewis, K. M., B. G. Mitchell, G. L. van Dijken, and K. R. Arrigo, 2016: Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates. Deep-Sea Res. Pt. II, 130, 14-27, https://doi.org/10.1016/j.dsr2.2016.04.020.

Lewis, K. M., G. L. van Dijken, and K. R. Arrigo, 2020: Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369, 198-202, https://doi.org/10.1126/science.aay8380.

Logvinova, C. L., K. E. Frey, and L. W. Cooper, 2016: The potential role of sea ice melt in the distribution of chromophoric dissolved organic matter in the Chukchi and Beaufort Seas. Deep-Sea Res. Pt. II, 130, 28-42, https://doi.org/10.1016/j.dsr2.2016.04.017.

Neeley, A. R., L. A. Harris, and K. E. Frey, 2018: Unraveling phytoplankton community dynamics in the northern Chukchi Sea under sea-ice-covered and sea-ice-free conditions. Geophys. Res. Lett., 45, 7663–7671, https://doi.org/10.1029/2018GL077684.

Randelhoff, A., and Coauthors, 2020: Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci. Adv., 6, eabc2678, https://doi.org/10.1126/sciadv.abc2678.

Rijkenberg, M. J., H. A. Slagter, M. Rutgers van der Loeff, J. van Ooijen, and L. J. A. Gerringa, 2018: Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin. Front. Mar. Sci., 5, 88, https://doi.org/10.3389/fmars.2018.00088.

Yun, M. S., and Coauthors, 2016: Primary production in the Chukchi Sea with potential effects of freshwater content. Biogeosciences, 13, 737-749, https://doi.org/10.5194/bg-13-737-2016.

Tundra Greenness

Bhatt, U. S., and Coauthors, 2021: Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett., 16, 055019, https://doi.org/10.1088/1748-9326/abe676.

Buchwal, A., and Coauthors, 2020: Divergence of Arctic shrub growth associated with sea ice decline. Proc. Natl. Acad. Sci. USA, 117, 33334-33344, https://doi.org/10.1073/pnas.2013311117.

Callaghan, T. V., R. Cazzolla Gatti, and G. Phoenix, 2021: The need to understand the stability of arctic vegetation during rapid climate change: An assessment of imbalance in the literature. Ambio, https://doi.org/10.1007/s13280-021-01607-w.

Campbell, T. K. F., T. C. Lantz, R. H. Fraser, and D. Hogan, 2021: High Arctic vegetation change mediated by hydrological conditions. Ecosystems, 24, 106-121, https://doi.org/10.1007/s10021-020-00506-7.

CAVM Team, 2003: Circumpolar Arctic vegetation map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, AK.

Christensen, T. R., and Coauthors, 2021: Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems, 24, 122-136, https://doi.org/10.1007/s10021-020-00507-6.

Gaglioti, B. V., and Coauthors, 2021: Tussocks enduring or shrubs greening: Alternate responses to changing fire regimes in the Noatak River Valley, Alaska. J. Geophys. Res.-Biogeosci., 126, e2020JG006009, https://doi.org/10.1029/2020JG006009.

Hemming, D. L., J. Garforth, J. O'Keefe, T. Park, A. D. Richardson, T. Rutishauser, T. H. Sparks, and S. J. Thackeray, 2021: Phenology of primary producers [in "State of the Climate in 2020"]. Bull. Amer. Meteor. Soc., 102, S108-S111.

Jones, B. M., K. D. Tape, J. A. Clark, I. Nitze, G. Grosse, and J. Disbrow, 2020: Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett., 15, 075005, https://doi.org/10.1088/1748-9326/ab80f1.

Karlsen, S. R., L. Stendardi, H. Tømmervik, L. Nilsen, I. Arntzen, and E. J. Cooper, 2021: Time-series of cloud-free Sentinel-2 NDVI data used in mapping the onset of growth of central Spitsbergen, Svalbard. Remote Sens., 13, 3031, https://doi.org/10.3390/rs13153031.

Kropp, H., and Coauthors, 2021: Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett., 16, 015001, https://doi.org/10.1088/1748-9326/abc994.

Magnússon, R. Í., J. Limpens, D. Kleijn, K. Huissteden, T. C. Maximov, S. Lobry, and M. M. P. D. Heijmans, 2021: Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ., 782, 146877, https://doi.org/10.1016/j.scitotenv.2021.146877.

Mekonnen, Z. A., and Coauthors, 2021: Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett., 16, 053001, https://doi.org/10.1088/1748-9326/abf28b.

Myers-Smith, I. H., and Coauthors, 2020: Complexity revealed in the greening of the Arctic. Nat. Climate Change, 10, 106-117, https://doi.org/10.1038/s41558-019-0688-1.

Parmentier, F. -J. W., L. Nilsen, H. Tømmervik, and E. J. Cooper, 2021: A distributed time-lapse camera network to track vegetation phenology with high temporal detail and at varying scales. Earth Syst. Sci. Data, 13, 3593-3606, https://doi.org/10.5194/essd-13-3593-2021.

Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960, https://doi.org/10.3390/rs6086929.

Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403-411, https://doi.org/10.1080/01431161.2011.609188.

Schaaf, C., and Z. Wang, 2015: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global - 500m V006. NASA EOSDIS Land Processes DAAC [Nadir BRDF-Adjusted Reflectance (NBAR) Daily L3 Global 500 m SIN Grid], accessed 1 September 2021, https://doi.org/10.5067/MODIS/MCD43A4.006.

Swanson, D. K., 2021: Start of the green season and Normalized Difference Vegetation Index in Alaska's Arctic national parks. Remote Sens., 13, 2554, https://doi.org/10.3390/rs13132554.

Veremeeva, A., I. Nitze, F. Günther, G. Grosse, and E. Rivkina, 2021: Geomorphological and climatic drivers of thermokarst lake area increase trend (1999-2018) in the Kolyma Lowland yedoma region, north-eastern Siberia. Remote Sens., 13, 178, https://doi.org/10.3390/rs13020178.

Veselkin, D. V., L. M. Morozova, and A. M. Gorbunova, 2021: Decrease of NDVI values in the southern tundra of Yamal in 2001-2018 correlates with the size of domesticated reindeer population. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 18, 143-155, https://doi.org/10.21046/2070-7401-2021-18-2-143-155.

Yang, D., and Coauthors, 2021: Landscape-scale characterization of Arctic tundra vegetation composition, structure, and function with a multi-sensor unoccupied aerial system. Environ. Res. Lett., 16, 085005, https://doi.org/10.1088/1748-9326/ac1291.

Beaver Engineering: Tracking a New Disturbance in the Arctic

ADF&G, 1965-2017: ADF&G (Furbearer) Reports. Alaska Department of Fish & Game, Division of Wildlife Conservation, Juneau, Alaska.

Bunn, S. E., and A. H. Arthington, 2002: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30(4), 492-507, https://doi.org/10.1007/s00267-002-2737-0.

Halley, D. J., A. P. Saveljev, and F. Rosell, 2021: Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev., 51, 1-24, https://doi.org/10.1111/mam.12216.

Jones, B. M., K. D. Tape, J. A. Clark, I. Nitze, G. Grosse, and J. Disbrow, 2020: Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett., 15(7), 075005, https://doi.org/10.1088/1748-9326/ab80f1.

Jung, T. S., J. Frandsen, D. C. Gordon, and D. H. Mossop, 2016: Colonization of the Beaufort coastal plain by Beaver (Castor canadensis): a response to shrubification of the Tundra? Can. Field Nat., 130(4), 332-335, https://doi.org/10.22621/cfn.v130i4.1927.

Lewkowicz, A. G., and T. L. Coultish, 2004: Beaver damming and palsa dynamics in a subarctic mountainous environment, Wolf Creek, Yukon Territory, Canada. Arct. Antarct. Alp. Res., 36, 208-218, https://doi.org/10.1657/1523-0430(2004)036[0208:bdapdi]2.0.co;2.

Moerlein, K. J., and C. Carothers, 2012: Total environment of change: impacts of climate change and social transitions on subsistence fisheries in northwest Alaska. Ecol. Soc., 17(1), 10, https://doi.org/10.5751/es-04543-170110.

Myers-Smith, I. H., and Coauthors, 2015: Climate sensitivity of shrub growth across the tundra biome. Nat. Climate Change, 5(9), 887-891, https://doi.org/10.1038/nclimate2697.

St. Jacques, J. -M., and D. J. Sauchyn, 2009: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett., 36(1), L01401, https://doi.org/10.1029/2008gl035822.

Tape, K. D., B. M. Jones, C. D. Arp, I. Nitze, and G. Grosse, 2018: Tundra be dammed: Beaver colonization of the Arctic. Glob. Change Biol., 24(10), 4478-4488, https://doi.org/10.1111/gcb.14332.

Tape, K. D., J. A. Clark, and B. M. Jones, 2021: Beaver Pond Locations in Arctic Alaska, 1949 to 2020. Arctic Data Center. Accessed 15 September 2021, https://doi.org/10.18739/A2QR4NR6D.

Whitfield, C. J., H. M. Baulch, K. P. Chun, and C. J. Westbrook, 2015: Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas. Ambio, 44(1), 7-15, https://doi.org/10.1007/s13280-014-0575-y.

Ocean Acidification

AMAP, 2018: AMAP Assessment 2018: Arctic Ocean Acidification. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. Vi+187 pp.

Anglada-Ortiz, G., K. Zamelczyk, J. Meilland, P. Ziveri, M. Chierici, A. Fransson, and T. L. Rasmussen, 2021: Planktic foraminiferal and pteropod contributions to carbon dynamics in the Arctic Ocean (North Svalbard Margin). Front. Mar. Sci., 8, 661158, https://doi.org/10.3389/fmars.2021.661158.

Ardyna, M., and K. R. Arrigo, 2020: Phytoplankton dynamics in a changing Arctic Ocean. Nat. Climate Change, 10(10), 892-903, https://doi.org/10.1038/s41558-020-0905-y.

Beaupré-Laperrière, A., A. Mucci, and H. Thomas, 2020: The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification. Biogeosciences, 17, 3923-3942, https://doi.org/10.5194/bg-17-3923-2020.

Bednaršek, N., and Coauthors, 2021: Integrated assessment of ocean acidification risks to pteropods in the northern high latitudes: Regional comparison of exposure, sensitivity and adaptive capacity. Front. Mar. Sci., 8, 671497, https://doi.org/10.3389/fmars.2021.671497.

Cassotta, S., 2021: Ocean acidification in the Arctic in a multi-regulatory, climate-justice perspective. Front. Climate, 3, 713644. https://doi.org/10.3389/fclim.2021.713644.

Chierici, M., M. Vernet, A. Fransson, and K. Y. Børsheim, 2019: Net community production and carbon exchange from winter to summer in the Atlantic Inflow to the Arctic Ocean. Front. Mar. Sci., 6, 528, https://doi.org/10.3389/fmars.2019.00528.

Duarte, C. M., A. B. Rodriguez-Navarro, A. Delgado-Huertas, and D. Krause-Jensen, 2020: Dense mytilus beds along freshwater-influenced Greenland shores: Resistance to corrosive waters under high food supply. Estuar. Coast., 43(2), 387-395, https://doi.org/10.1007/s12237-019-00682-3.

Goethel, C. L., J. M. Grebmeier, L. W. Cooper, and T. J. Miller, 2017: Implications of ocean acidification in the Pacific Arctic: experimental responses of three Arctic bivalves to decreased pH and food availability. Deep-Sea Res. Pt. II, 144, 112-124, https://doi.org/10.1016/j.dsr2.2017.08.013.

Hänsel, M. C., J. O. Schmidt, M. H. Stiasny, M. T. Stöven, R. Voss, and M. F. Quaas, 2020: Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100. PLoS One, 15(4), e0231589, https://doi.org/10.1371/journal.pone.0231589.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte, and coeditors, (eds.)]. Cambridge University Press.

Jones, E. M., M. Chierici, S. Menze, A. Fransson, R. B. Ingvaldsen, and H. H. Lødemel, 2021: Ocean acidification state variability of the Atlantic Arctic Ocean around northern Svalbard. Prog. Oceanogr., 199, 102708, https://doi.org/10.1016/j.pocean.2021.102708.

Mortenson, E., N. Steiner, A. H. Monahan, H. Hayashida, T. Sou, and A. Shao, 2020: Modeled impacts of sea ice exchange processes on Arctic Ocean carbon uptake and acidification, 1980-2015. J. Geophys. Res.-Oceans, 125(7), e2019JC015782, https://doi.org/10.1029/2019JC015782.

Niemi, A., N. Bednaršek, C. Michel, R. A. Feely, W. Williams, K. Azetsu-Scott, W. Walkusz, and J. D. Reist, 2021: Biological impact of ocean acidification in the Canadian Arctic: Widespread severe pteropod shell dissolution in Amundsen Gulf. Front. Mar. Sci., 8, 600184, https://doi.org/10.3389/fmars.2021.600184.

Pilcher, D. J., D. M. Naiman, J. N. Cross, A. J. Hermann, S. A. Siedlecki, G. A. Gibson, and J. T. Mathis, 2019: Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification on aragonite saturation state in the Bering Sea. Front. Mar. Sci., 5, 508, https://doi.org/10.3389/fmars.2018.00508.

Qi, D., and Coauthors, 2017: Increase in acidifying water in the western Arctic Ocean. Nat. Climate Change, 7, 195-199, https://doi.org/10.1038/NCLIMATE3228.

Qi, D., and Coauthors, 2020. Coastal acidification induced by biogeochemical processes driven by sea-ice melt in the western Arctic Ocean. Polar Sci., 23, 100504, https://doi.org/10.1016/j.polar.2020.100504.

Steiner, N. S., and Coauthors, 2019: Impacts of changing ocean-sea ice system on the key forage fish Arctic Cod (Boreogadus saida) and subsistence fisheries in the western Canadian Arctic—evaluating linked climate, ecosystem, and economic (CEE) models. Front. Mar. Sci., 6, 179, https://doi.org/10.3389/fmars.2019.00179.

Sugie, K., A. Fujiwara, S. Nishino, S. Kameyama, and N. Harada, 2020: Impacts of temperature, CO2, and salinity on phytoplankton community composition in the western Arctic Ocean. Front. Mar. Sci., 6, 821, https://doi.org/10.3389/fmars.2019.00821.

Tai, T. C., U. R. Sumaila, and W. W. L. Cheung, 2021: Ocean acidification amplifies multi-stressor impacts on global marine invertebrate fisheries. Front. Mar. Sci., 8, 596644. https://doi.org/10.3389/fmars.2021.596644.

Terhaar, J., L. Kwiatkowski, and L. Bopp, 2020: Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature, 582, 379-383, https://doi.org/10.1038/s41586-020-2360-3.

Torstensson, A., A. R. Margolin, G. M. Showalter, W. O. Smith Jr., E. H. Shadwick, S. D. Carpenter, F. Bolinesi, and J. W. Deming, 2021: Sea-ice microbial communities in the Central Arctic Ocean: Limited responses to short-term pCO2 perturbations. Limnol. Oceanogr., 66(S1), S383-S400, https://doi.org/10.1002/lno.11690.

Ulfsbo, A., E. M. Jones, N. Casacuberta, M. Korhonen, B. Rabe, M. Karcher, and S. M. A. C. van Heuven, 2018: Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996-2015. Global Biogeochem. Cycles, 32(9), 1254-1275, https://doi.org/10.1029/2017GB005738.

Zhang, Y., M. Yamamoto-Kawai, W. J. Williams, 2020: Two decades of ocean acidification in the surface waters of the Beaufort Gyre, Arctic Ocean: Effects of sea ice melt and retreat from 1997-2016. Geophys. Res. Lett., 47(3), e60119, https://doi.org/10.1029/2019GL086421.

River Discharge

Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94(C10), 14485-14498, https://doi.org/10.1029/jc094ic10p14485.

Ballinger, T. J., and Coauthors, 2020: Surface air temperature. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/gcw8-2z06.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.

Holmes, R. M., A. I. Shiklomanov, A. Suslova, M. Tretiakov, J. W. McClelland, R. G. Spencer, and S.E. Tank, 2018: River discharge. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://doi.org/10.25923/krcx-z320.

McClelland, J. W., S. J. Déry, B. J. Peterson, R. M. Holmes, and E. F. Wood, 2006: A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33(6), L06715, https://doi.org/10.1029/2006gl025753.

McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. W. Macdonald, 2011: The Arctic Ocean estuary. Estuaries Coasts, 35(2), 353-368, https://doi.org/10.1007/s12237-010-9357-3.

Mudryk, L., R. Brown, C. Derksen, K. Luojus, B. Decharme, and S. Helfrich, 2019: Terrestrial snow cover. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds., https://doi.org/10.25923/bw4d-my28.

Mudryk, L., A. Elias Chereque, R. Brown, C. Derksen, K. Luojus, and B. Decharme, 2020: Terrestrial snow cover. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/p6ca-v923.

Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. G. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298(5601), 2171-2173, https://doi.org/10.1126/science.1077445.

Shiklomanov, A. I., T. I. Yakovleva, R. B. Lammers, I. Ph. Karasev, C. J. Vörösmarty, and E. Linder, 2006: Cold region river discharge uncertainty-estimates from large Russian rivers. J. Hydrol., 326(1-4), 231-256, https://doi.org/10.1016/j.jhydrol.2005.10.037.

Shiklomanov, A. I., S. Déry, M. Tretiakov, D. Yang, D. Magritsky, A. Georgiadi, and W. Tang, 2021: River freshwater flux to the Arctic Ocean. Arctic Hydrology, Permafrost and Ecosystems, D. Yang, D. L. Kane, Springer, Cham, 703-738, https://doi.org/10.1007/978-3-030-50930-9_24.

2020 Foreign Marine Debris Event—Bering Strait

Bodenstein, B., K. Beckmen, G. Sheffield, K. Kuletz, C. Van Hemert, B. Berlowski, and V. Shearn-Boschler, 2015: Avian cholera causes marine bird mortality in the Bering Sea of Alaska. J. Wildl. Dis., 51(4), 934-937, https://doi.org/10.7589/2014-12-273.

Eisner, L. B., Y. I. Zuenko, E. O. Basyuk, L. L. Britt, J. T. Duffy-Anderson, S. Kotwicki, C. Ladd, and W. Cheng, 2020: Environmental impacts on walleye pollock (Gadus chalcogrammus) distribution across the Bering Sea shelf. Deep-Sea Res. Pt. II, 181-182, 104881, https://doi.org/10.1016/j.dsr2.2020.104881.

Humpert, M., 2021: "Winter transits along the Northern Sea Route open up a new frontier in Arctic shipping". Arctic Today, 25 Jan. 2021, https://www.arctictoday.com/winter-transits-along-the-northern-sea-route-open-up-a-new-frontier-in-arctic-shipping/.

International Maritime Organization, 2021: Prevention of pollution by garbage from ships. https://www.imo.org/en/OurWork/Environment/Pages/Garbage-Default.aspx.

Isachenkov, V., 2020: "Russian Navy conducts major maneuvers near Alaska." Associated Press, 28 Aug. 2020, US News & World Report, https://www.usnews.com/news/world/articles/2020-08- 28/russian-navy-conducts-major-maneuvers-near-alaska.

Kylin, H., 2020: Marine debris on two Arctic beaches in the Russian Far East. Polar Res., 39, https://doi.org/10.33265/polar.v39.3381.

Mua, J., S. Zhang, L. Qu, F. Jin, C. Fang, X. Ma, W. Zhang, and J. Wang, 2019: Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull., 143, 58-65, https://doi.org/10.1016/j.marpolbul.2019.04.023.

Overland, J. E., and A. T. Roach, 1987: Northward flow in the Bering and Chukchi seas. J. Geophys. Res.-Oceans, 92, 7097-7105, https://doi.org/10.1029/JC092iC07p07097.

Smith, R. B., 2020: "Oily substance found near Savoonga remains a mystery". The Nome Nugget, 24 Jul. 2020, http://www.nomenugget.com/news/oily-substance-found-near-savoonga-remains-mystery.

Smith, R. B., 2021: "Russian tanker passes through Bering Strait in the midst of winter". The Nome Nugget, 15 Jan. 2021, http://www.nomenugget.com/news/russian-tanker-passes-through-bering-strait-midst-winter.

Spies, I., K. M. Gruenthal, D. P. Drinan, A. B. Hollowed, D. E. Stevenson, C. M. Tarpey, and L. Hauser, 2020: Genetic evidence of a northward range expansion in the eastern Bering Sea stock of Pacific cod. Evol. Appl., 13(2), 362-375, https://doi.org/10.1111/eva.12874.

Stevenson, D. E., and R. R. Lauth, 2019: Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. Polar Biol., 42, 407-421, https://doi.org/10.1007/s00300-018-2431-1.

Stimmelmayr, R., G. M. Ylitalo, G. Sheffield, K. B. Beckmen, K. A. Burek-Huntington, V. Metcalf, and T. Rowles, 2018: Oil fouling in three subsistence-harvested ringed (Phoca hispida) and spotted (Phoca largha) seals from the Bering Strait region, Alaska: Polycyclic aromatic hydrocarbon bile and tissue levels and pathological findings. Mar. Pollut. Bull., 130, 2018, 311-323, https://doi.org/10.1016/j.marpolbul.2018.02.040.

Stimmelmayr, R., J. Garlich-Miller, and W. Neakok, 2013: Ulcerative dermatitis disease syndrome—a new disease in walrus and ice seals? Workshop on Assessing Pacific Walrus Population Attributes from Coastal Haul-Outs. USFWS Administrative Report, R7/MMM 13-1, Anchorage, AK, Marine Mammals Management, US Fish and Wildlife Service, 69-70, https://www.fws.gov/r7/fisheries/mmm/walrus/pdf/Bilateral%20workshop%20Report_v3.pdf.

Sutton, H. I., 2020: "Russian Navy submarine surfaces off Alaska; likely same one that fired cruise missile earlier in exercise". Forbes Magazine, 28 Aug. 2020, https://www.forbes.com/sites/hisutton/2020/08/28/russian-navy-submarine-seen-off- alaska-likely-fired-a-cruise-missile/?sh=169ead2a6f39.

Thoman, R., and Coauthors, 2020: The record low Bering Sea ice extent in 2018: Content, impacts, and an assessment of the role of anthropogenic climate change. Bull. Amer. Meteor. Soc., 101(1), S53-S58, https://doi.org/10.1175/BAMS-D-19-0175.1.

U.S. Committee on the Marine Transportation System (USCMTS), 2019: A ten-year projection of maritime activity in the U.S. Arctic region, 2020-2030. Washington, D.C., https://www.cmts.gov/downloads/CMTS_2019_Arctic_Vessel_Projection_Report.pdf.

Van Hemert, C., and Coauthors, 2021: Investigation of algal toxins in a multispecies seabird die-off in the Bering and Chukchi Seas. Short communications. J. Wildl. Dis., 57(2), 399-407, https://doi.org/10.7589/JWD-D-20-00057.

Glacier and Permafrost Hazards

Arp, C. D., B. M. Jones, K. M. Hinkel, D. L. Kane, M. S. Whitman, and R. Kemnitz, 2020: Recurring outburst floods from drained lakes: An emerging Arctic hazard. Front. Ecol. Environ., 18(7), 384-390, https://doi.org/10.1002/fee.2175.

Bellwald, B., B. O. Hjelstuen, H. P. Sejrup, and H. Haflidason, 2016: Postglacial mass movements and depositional environments in a high-latitude fjord system—Hardangerfjorden, Western Norway. Mar. Geol., 379, 157-175, https://doi.org/10.1016/j.margeo.2016.06.002.

Berkman, P. A, G. Fiske, and D. Lorenzini, 2020: Baseline of next-generation Arctic marine shipping assessments - Oldest continuous pan-Arctic satellite Automatic Identification System (AIS) data record of maritime ship traffic, 2009-2016. Arctic Data Center, https://doi.org/10.18739/A2TD9N89Z.

Bessette-Kirton, E. K., and J. A. Coe, 2020: A 36-year record of rock avalanches in the St. Elias Mountains of southeast Alaska, with implications for future hazards. Front. Earth Sci., 8, 293, https://doi.org/10.3389/feart.2020.00293.

Brown, J., O. J. Ferrians Jr., J. A. Heginbottom, and E. S. Melnikov, 1997: Circum-Arctic Map of Permafrost and Ground-Ice Conditions. Circum-Pacific Map CP-45, 1:10,000,000-Scale. Washington, DC, U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources. 1 sheet, https://doi.org/10.3133/cp45.

Cameron, R., and V. Romanovsky, 2021: Thawing permafrost and subsidence causing on-going water system challenges. LEO Network (leonetwork.org). Accessed 13 September 2021.

Dahl-Jensen, T., and Coauthors, 2004: Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Nat. Hazards, 31, 277-287, https://doi.org/10.1023/B:NHAZ.0000020264.70048.95.

Dai, C., and Coauthors, 2020: Detection and assessment of a large and potentially tsunamigenic periglacial landslide in Barry Arm, Alaska. Geophys. Res. Lett., 47(22), e2020GL089800, https://doi.org/10.1029/2020GL089800.

Dobbin, P., 2016: DEC looks into whether drums in village's drinking water lake pose any hazards. Alaska's News Source (9 Aug 2016), https://www.alaskasnewssource.com/content/news/Officials-try-to-determine-if-Point-Lays-drinking-water-is-safe-or-contaminated-389669191.html, Accessed 13 Sep 2021.

Farquharson, L. M., V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V. Kokelj, and D. Nicolsky, 2019: Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett., 46(12), 6681-6689, https://doi.org/10.1029/2019GL082187.

Francis, J. A., N. Skific, S. J. Vavrus, and J. Cohen, 2021: Measuring "weather whiplash" events in North America: A new large-scale regime approach. Preprint ESSOAr, https://doi.org/10.1002/essoar.10507297.1.

Frauenfelder, R., K. Isaksen, M. J. Lato, and J. Noetzli, 2018: Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway). Cryosphere, 12(4), 1531-1550, https://doi.org/10.5194/tc-12-1531-2018.

Gauthier, D., S. A. Anderson, H. M. Fritz, and T. Giachetti, 2018: Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: Initial 3D observations. Landslides, 15(2), 327-332, https://doi.org/10.1007/s10346-017-0926-4.

Gibson, C. M., T. Brinkman, H. Cold, D. Brown, and M. Turetsky, 2021: Identifying increasing risks of hazards for northern land-users caused by permafrost thaw: Integrating scientific and community-based research approaches. Environ. Res. Lett., 16(6), 064047, https://doi.org/10.1088/1748-9326/abfc79.

Haeberli, W., Y. Schaub, and C. Huggel 2017: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 293, 405-417, https://doi.org/10.1016/j.geomorph.2016.02.009.

Higman, B., and Coauthors, 2018: The 2015 landslide and tsunami in Taan Fiord, Alaska. Sci. Rep., 8, 12993, https://doi.org/10.1038/s41598-018-30475-w.

Hilger, P., R. L. Hermanns, J. Czekirda, K. S. Myhra, J. S. Gosse, and B. Etzelmüller, 2021: Permafrost as a first order control on long-term rock-slope deformation in (Sub-) Arctic Norway. Quat. Sci. Rev., 251, 106718, https://doi.org/10.1016/j.quascirev.2020.106718.

Hock, R., and Coauthors, 2019: High Mountain Areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) [H. -O. Pörtner, and Coauthors (eds.)], IPCC, Geneva. In press.

Hugonnet, R., and Coauthors, 2021: Accelerated global glacier mass loss in the early twenty-first century. Nature, 592, 726-731, https://doi.org/10.1038/s41586-021-03436-z.

IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H. -O. Pörtner, and Coauthors (eds.)]. In press.

Jacquemart, M., M. Loso, M. Leopold, E. Welty, E. Berthier, J. S. Hansen, J. Sykes, and K. Tiampo, 2020: What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska. Geology, 48(7), 703-707, https://doi.org/10.1130/G47211.1.

Kienholz, C., and Coauthors, 2020: Deglacierization of a marginal basin and implications for outburst floods, Mendenhall Glacier, Alaska. Front. Earth Sci., 8, 137, https://doi.org/10.3389/feart.2020.00137.

Kokelj, S. V., J. Tunnicliffe, D. Lacelle, T. C. Lantz, K. S. Chin, and R. Fraser, 2015: Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global Planet Change, 129, 56-68, https://doi.org/10.1016/j.gloplacha.2015.02.008.

Leibman, M. O., A. V. Khomutov, A. A. Gubarkov, Y. A. Dvornikov, and D. R. Mullanurov, 2015: The research station "Vaskiny Dachi", central Yamal, West Siberia, Russia—A review of 25 years of permafrost studies. Fennia, 193(1), 3-30, https://doi.org/10.11143/45201.

Lewkowicz, A. G., and R. G. Way, 2019: Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7.

Liljedahl, A. K., and Coauthors, 2016: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci., 9, 312-318, https://doi.org/10.1038/ngeo2674.

Miner, K. R., J. D'Andrilli, R. Mackelprang, A. Edwards, M. J. Malaska, M. P. Waldrop, and C. E. Miller, 2021: Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Climate Change, 11, 809-819, https://doi.org/10.1038/s41558-021-01162-y.

Nitze, I., S. W. Cooley, C. R. Duguay, B. M. Jones, and G. Grosse, 2020: The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: Fast-forward into the future. Cryosphere, 14, 4279-4297, https://doi.org/10.5194/tc-14-4279-2020.

Rajendran, S., F. N. Sadooni, H. A. -S. Al-Kuwari, A. Oleg, H. Govil, S. Nasir, and P. Vethamony, 2021: Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep., 11, 3817, https://doi.org/10.1038/s41598-021-83260-7.

Ramage, J., L. Jungsberg, S. Wang, S. Westermann, H. Lantuit, and T. Heleniak, 2021: Population living on permafrost in the Arctic. Popul. Environ., 43, 22-38, https://doi.org/10.1007/s11111-020-00370-6.

Sæmundsson, Þ., C. Morino, J. K. Helgason, S. J. Conway, and H. G. Pétursson, 2018: The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost. Sci. Total. Environ., 621, 1163-1175, https://doi.org/10.1016/j.scitotenv.2017.10.111.

Sevestre, H., D. I. Benn, A. Luckman, C. Nuth, J. Kohler, K. Lindbäck, and R. Pettersson, 2018: Tidewater glacier surges initiated at the terminus. J. Geophys. Res.-Earth Surf., 123(5), 1035-1051, https://doi.org/10.1029/2017JF004358.

Smith, S. L., and Coauthors, 2021: [Arctic] Permafrost [in "State of the Climate in 2020"]. Bull. Amer. Meteor., 102(8), S293-S297, https://doi.org/10.1175/BAMS-D-21-0086.1.

Streletskiy, D. A., N. I. Shiklomanov, and F. E. Nelson, 2012: Permafrost, infrastructure and climate change: A GIS-based landscape approach to geotechnical modeling. Arct. Antarct. Alp. Res., 44(3), 368-380, https://doi.org/10.1657/1938-4246-44.3.368.

Suter, L., D. Streletskiy, and N. Shiklomanov. 2019: Assessment of the costs of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geogr., 42(4), 267-286, https://doi.org/10.1080/1088937X.2019.1686082.

Svennevig, K., T. Dahl-Jensen, M. Keiding, J. P. Merryman Boncori, T. B. Larsen, S. Salehi, A. Munck Solgaard, and P. H. Voss, 2020: Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland—A multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area. Earth Surf. Dyn., 8(4), 1021-1038, https://doi.org/10.5194/esurf-8-1021-2020.

Vasiliev, A. A., D. S. Drozdov, A. G. Gravis, G. V. Malkova, K. E. Nyland, and D. A. Streletskiy, 2020: Permafrost degradation in the Western Russian Arctic. Environ. Res. Lett., 15(4), 045001, https://doi.org/10.1088/1748-9326/ab6f12.

The Changing Arctic Marine Soundscape

Ahonen, H., K. M. Stafford, C. Lydersen, C. L. Berchok, S. E. Moore, and K. M. Kovacs, 2021: Interannual variability in acoustic detection of blue and fin whale calls in the Northeast Atlantic High Arctic between 2008 and 2018. Endanger. Species Res., 45, 209-224, https://doi.org/10.3354/esr01132.

Ahonen, H., K. M. Stafford, C. Lydersen, L. de Steur, and K. M. Kovacs, 2019: A multi-year study of narwhal occurrence in the western Fram Strait—detected via passive acoustic monitoring. Polar Res., 38, 181, https://doi.org/10.33265/polar.v38.3468.

Halliday, W. D., M. K. Pine, and S. J. Insley, 2020: Underwater noise and Arctic marine mammals: review and policy recommendations. Environ. Rev., 28, 438-448, https://doi.org/10.1139/er-2019-0033.

Han, D. -G., and Coauthors, 2021: Effects of geophony and anthrophony on the underwater acoustic environment in the East Siberian Sea, Arctic Ocean. Geophys. Res. Lett., 48, e2021GL093097, https://doi.org/10.1029/2021GL093097.

Hannay, D. E., J. Delarue, X. Mouy, B. S. Martin, D. Leary, J. N. Oswald, and J. Vallarta, 2013: Marine mammal acoustic detections in the northeastern Chukchi Sea, September 2007-July 2011. Cont. Shelf Res., 67, 127–146, https://doi.org/10.1016/j.csr.2013.07.009.

Huntington, H. P., and Coauthors, 2020: Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway. Nat. Climate Change, 10, 342–348, https://doi.org/10.1038/s41558-020-0695-2.

Insley, S. J., W. D. Halliday, X. Mouy, and N. Diogou, 2021: Bowhead whales overwinter in the Amundsen Gulf and Eastern Beaufort Sea. Roy. Soc. Open Sci., 8, 202268, https://doi.org/10.1098/rsos.202268.

Moore, S. E., T. Haug, G. A. Vikingsson, and G. B. Stenson, 2019: Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr., 176, 102118, https://doi.org/10.1016/j.pocean.2019.05.010.

Northern Sea Route Information Office, 2021. NSR shipping traffic. Accessed 15 September 2021, https://arctic-lio.com/nsr-shipping-traffic-activities-in-january-april-2021/.

PAME, 2019: Underwater Noise in the Arctic: A State of Knowledge Report, Roveniemi, May 2019.

PAME, 2021: Shipping in the Northwest Passage: comparing 2013 with 2019, Roveniemi, May 2019.

Simon, M., K. M. Stafford, K. Beedholm, C. M. Lee, and P. T. Madsen, 2010: Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Amer., 128, 3200-3210, https://doi.org/10.1121/1.3495946.

Stafford, K. M., 2019: Increasing detections of killer whales (Orcinus orca), in the Pacific Arctic. Mar. Mammal Sci., 35(2), 696-706, https://doi.org/10.1111/mms.12551.

Stafford, K. M., J. J. Citta, S. Okkonen, and J. Zhang, 2021: Bowhead and beluga whale acoustic detections in the western Beaufort Sea 2008-2018. PLoS ONE, 16, e0253929, https://doi.org/10.1371/journal.pone.0253929.

Würsig, B., and W. R. Koski, 2021: Naturally and potentially disturbed behavior of bowhead whales. The Bowhead Whale, J. G. M. Thewissen JGM and J. C. George, Eds. Elsevier Publishing; ISBN: 978-0-12-818969-6.

Zhang, F., X. Pang, R. Lei, M. Zhai, X. Zhao, and C. Q, 2021: Arctic sea ice motion change and response to atmospheric forcing between 1979 and 2019. Int. J. Climatol., 1-23, https://doi.org/10.1002/joc.7340.

The Impact of COVID-19 on Food Sovereignty for Alaska Natives in 2020

Anderson, T., 2020: Wheels up: Ravn will return to the skies under new ownership. Alaska Business, https://www.akbizmag.com/monitor/wheels-up-ravn-will-return-to-the-skies-under-new-ownership/ (27 August 2020).

Douglas, J., 2020: The Alaska Native village of Kake defends their right to hunt. High Country News, https://www.hcn.org/articles/indigenous-affairs-justice-the-alaska-native-village-of-kake-defends-their-right-to-hunt (12 October 2020).

Estus, J., 2020: Emergency hunts in Alaska can continue. Indian Country Today, https://indiancountrytoday.com/news/emergency-hunts-in-alaska-can-continue (27 November 2020).

Inuit Circumpolar Council-Alaska, 2015: Alaskan Inuit Food Security Conceptual Framework: How to Assess the Arctic From an Inuit Perspective: Summary and Recommendations Report. Anchorage, AK. https://iccalaska.org/wp-icc/wp-content/uploads/2016/03/Food-Security-Summary-and-Recommendations-Report.pdf.

Inuit Circumpolar Council Alaska, 2019: Alaskan Inuit Food Sovereignty Summit Report. Anchorage, Alaska, https://iccalaska.org/wp-icc/wp-content/uploads/2020/05/FINAL-Alaskan-Inuit-Food-Sovereignty-Summit-Report-3.pdf.

Jäger, M. B., and Coauthors, 2019: Building an Indigenous foods knowledges network through relational accountability. J. Agric. Food Syst. Community Dev., 9(B), 45-51, https://doi.org/10.5304/jafscd.2019.09B.005.

Jenkins, E., 2020: Amid food supply chain concerns, tribal governments request emergency hunts. KTOO Public Media, https://www.ktoo.org/2020/04/14/amid-food-supply-chain-concerns-tribal-governments-request-emergency-hunts/ (14 April 2020).

Resneck, J., 2020: Native rights group backs Kake in lawsuit over emergency subsistence hunt. Alaska Public Radio, https://www.alaskapublic.org/2020/09/04/native-rights-group-backs-kake-in-lawsuit-over-emergency-subsistence-hunt/ (4 September 2020).

Slontik, D. E., E. Medina, and M. Baker, 2021: Hospitals in Alaska struggle to handle a worsening outbreak. The New York Times, https://www.nytimes.com/2021/09/22/us/covid-alaska-hospital.html (22 September 2021).

Sullivan, M., 2020: Alaska airline shutdown: 'How are we gonna get our food, our mail, our medical needs?' Indian Country Today, https://indiancountrytoday.com/news/alaska-airline-shutdown-how-are-we-gonna-get-our-food-our-mail-our-medical-needs (30 May 2020).

Sullivan, M., 2021: 'We don't exist out here' without subsistence. Indian Country Today, https://indiancountrytoday.com/news/we-dont-exist-out-here-without-subsistence (19 October 2021).

Thornberg, R., and K. Charmaz, 2014: The SAGE Handbook of Qualitative Data Analysis, U. Flick, Ed., SAGE Publications, 153-169.

Print

x

Focus Areas

Arctic Report Card

Tracking recent environmental changes relative to historical records

More

Oceans

Conserving and managing our Arctic Ocean resources

Weather

Providing weather information to protect lives, property, and management

More

Satellites

Observing the Arctic ocean and atmosphere to understand and forecast Arctic change

More

Research

Providing environmental intelligence to understanding the complex Arctic system

More

Fisheries

Conserving and managing Arctic living marine resources and their habitats

More

ARCTIC HEADQUARTERS

stay connected

About Our Organization

Issued annually since 2006, the Arctic Report Card is a timely and peer-reviewed source for clear, reliable and concise environmental information on the current state of different components of the Arctic environmental system relative to historical records. The Report Card is intended for a wide audience, including scientists, teachers, students, decision-makers and the general public interested in the Arctic environment and science.

Copyright 2022 by Arctic Program Terms Of Use Privacy Statement
Back To Top