Executive Summary
Wolkin, G. J., and Coauthors, 2021: Glacier and permafrost hazards. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., https://doi.org/10.25923/v40r-0956.
Executive Summary – Wildfire Sidebar
Alaska Interagency Coordination Center, 2023: https://fire.ak.blm.gov/, accessed 31 October 2023.
CBC News, 2023: “Enterprise, N.W.T., ’90 per cent gone’ after wildfire ravages community” (15 August 2023). https://www.cbc.ca/news/canada/north/enterprise-damage-wildfire-1.6936652, accessed 15 September 2023.
Northwest Territories Department of Environment and Climate Change, 2023: https://www.gov.nt.ca/ecc/en/services/wildfire-update, accessed 31 October 2023.
Thompson, Shane, Northwest Territories Minister of Environment and Natural Resources, Ministers’ Statements and Speeches, 2023: Remarks on 28 September 2023, https://www.gov.nt.ca/en/newsroom/shane-thompson-historic-2023-wildfire-season, accessed 29 October 2023.
York, A., U. S. Bhatt, E. Gargulinski, Z. Grabinski, P. Jain, A. Soja, R. L. Thoman, and R. Ziel, 2020: Wildland fire in high northern latitudes. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/2gef-3964.
Yukon Wildfire Services, 2023: https://wildfires.service.yukon.ca/, accessed 31 October 2023.
Surface Air Temperature
Ballinger, T. J., and Coauthors, 2022: Surface air temperature. Arctic Report Card 2021, M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., https://doi.org/10.25923/13qm-2576.
Ballinger, T. J., and Coauthors, 2023: Alaska terrestrial and marine climate trends, 1957-2021. J. Climate, 36, 4375-4391, https://doi.org/10.1175/JCLI-D-22-0434.1.
Box, J. E., and Coauthors, 2021: Recent developments in Arctic climate observational indicators. AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromso, Norway, pp. 7-29.
Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Isaksen, K., and Coauthors, 2022: Exceptional warming over the Barents area. Sci. Rep., 12, 9371, https://doi.org/10.1038/s41598-022-13568-5.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res.-Atmos., 124, 6307-6326, https://doi.org/10.1029/2018JD029522.
Moon, T. A., and Coauthors, 2019: The expanding footprint of rapid Arctic change. Earth’s Future, 7, 212-218, https://doi.org/10.1029/2018EF001088.
Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 85-96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.
Terrestrial Snow Cover
Brown, R., and Coauthors, 2017: Arctic terrestrial snow cover. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. pp. 25-64, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219, https://doi.org/10.1175/JHM-D-12-012.1.
Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137-142, https://doi.org/10.5194/essd-7-137-2015.
Gelaro, R., and Coauthors, 2017: The Modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
GMAO (Global Modeling and Assimilation Office), 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GESDISC), accessed: 3 August 2023, https://doi.org/10.5067/RKPHT8KC1Y1T.
Luojus, K., and Coauthors, 2022: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979 – 2020), version 2.0. NERC EDS Centre for Environmental Data Analysis, accessed: 27 August 2023, https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494.
Meredith, M., and Coauthors, 2019: Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H. -O. Pörtner, and co-editors, Cambridge University Press, Cambridge, UK and New York, NY, USA, 203-320, https://doi.org/10.1017/9781009157964.005.
Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 1579-1594, https://doi.org/10.5194/tc-14-1579-2020.
Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed: 3 October 2023, https://doi.org/10.24381/cds.e2161bac.
Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 [r01]. NOAA National Centers for Environmental Information, accessed: 30 August 2023, https://doi.org/10.7289/V5N014G9.
U.S. National Ice Center, 2008: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center, accessed: 18 August 2023, https://doi.org/10.7265/N52R3PMC.
Precipitation
Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf , K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Sys. Sci. Data, 5(1), 71-99, https://doi.org/10.5194/essd-5-71-2013.
Bigalke, S., and J. E. Walsh, 2022: Future changes of snow in Alaska and the Arctic under stabilized global warming scenarios. Atmosphere, 13, 541, https://doi.org/10.3390/atmos13040541.
Box, J. E, and Coauthors, 2021: Recent developments in Arctic climate observation indicators. In AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromso, Norway, 7-29 pp.
Hersbach, H, B., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Loeb N.A., A. Crawford, J. C. Stroeve, and J. Hanesiak, 2022: Extreme precipitation in the eastern Canadian Arctic and Greenland: An evaluation of atmospheric reanalyses. Front. Env. Sci., 10, 866929, https://doi.org/10.3389/fenvs.2022.866929.
McCrystall, M. R., J. Stroeve, M. C. Serreze, B. C. Forbes, and J. A. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12(1), 6765, https://doi.org/10.1038/s41467-021-27031-y.
NOAA National Centers for Environmental Information, 2023a: Climate at a Glance: Divisional Rankings, published September 2023, retrieved on 4 October 2023, https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/rankings.
NOAA National Centers for Environmental Information, 2023b: North American Drought Monitor, retrieved 13 November 2023, https://www.ncei.noaa.gov/access/monitoring/nadm/maps.
Schneider, U., P. Finger, E. Rustemeier, M. Ziese, and S. Hänsel, 2022: Global precipitation analysis products of the GPCC, https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_v2022.pdf.
Walsh, J. E., S. Bigalke, S. A. McAfee, R. Lader, M. C. Serreze, and T. J. Ballinger, 2022: Precipitation. Arctic Report Card 2022, M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., https://doi.org/10.25923/yxs5-6c72.
Ye, H., D. Yang, A. Behrangi, S. L. Stuefer, X. Pan, E. Mekis, Y. Dibike, and J. E. Walsh, 2021: Precipitation Characteristics and Changes. Chapter 2 in Arctic Hydrology, Permafrost and Ecosystems (D. Yang and D. L. Kane, Eds.), Springer Nature Switzerland, 25-59, https://doi.org/10.1007/978-3-030-50930-9.
Yu, L., and S. Zhong, 2021: Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145, 1541-1559, https://doi.org/10.1007/s00704-021-03717-7.
Greenland Ice Sheet
Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land-ice albedo grids (2000-2016). GEUS Bull., 38, 53-56, https://doi.org/10.34194/geusb.v38.4414.
Colgan, W., and Coauthors, 2015: Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic. Remote Sens. Environ., 168, 24-39, https://doi.org/10.1016/j.rse.2015.06.016.
Fettweis, X., and Coauthors, 2020: GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 14, 3935-3958, https://doi.org/10.5194/tc-14-3935-2020.
Kokhanovsky, A., J. E. Box, B. Vandecrux, K. D. Mankoff, M. Lamare, A. Smirnov, and M. Kern, 2020: The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens., 12, 234, https://doi.org/10.3390/rs12020234.
Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367-1383, https://doi.org/10.5194/essd-12-1367-2020.
Mankoff, K. D., and Coauthors, 2021: Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001-5025, https://doi.org/10.5194/essd-13-5001-2021.
Mote, T. L., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Tapley, B. D., and Coauthors, 2019: Contributions of GRACE to understanding climate change. Nat. Climate Change, 9, 358-369, https://doi.org/10.1038/s41558-019-0456-2.
van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wal, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. GEUS Bull., 35, 71-74, https://doi.org/10.34194/geusb.v35.4942.
Wehrlé, A., J. E. Box, M. Niwano, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bull., 47, 5284, https://doi.org/10.34194/geusb.v47.5284.
Wood, M., E. Rignot, I. Fenty, D. Menemenlis, R. Millan, M. Morlighem, J. Mouginot, and H. Seroussi, 2018: Ocean-induced melt triggers glacier retreat in Northwest Greenland. Geophys. Res. Lett., 45, 16, 8334-8342, https://doi.org/10.1029/2018GL078024.
Zemp, M., and Coauthors, 2019: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382-386, https://doi.org/10.1038/s41586-019-1071-0.
Sea Ice
ASINA (Arctic Sea Ice News & Analysis), 2023: “Late summer heat wave avoids central Arctic”, National Snow and Ice Data Center, accessed 6 September 2023, https://nsidc.org/arcticseaicenews/2023/09/late-summer-heat-wave-arctic/.
Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 12 September 2023, https://doi.org/10.5067/8GQ8LZQVL0VL.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, accessed 12 September 2023, https://doi.org/10.7265/N5K072F8.
Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49-78, https://doi.org/10.5194/tc-13-49-2019.
Maslanik, J., and J. Stroeve, 1999: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 12 September 2023, https://doi.org/10.5067/U8C09DWVX9LM.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res.-Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.
Petty, A. A., N. Kurtz, R. Kwok, T. Markus, T. A. Neumann, and N. Keeney, 2022: ICESat-2 L4 Monthly Gridded Sea Ice Thickness, Version 2 [Data Set]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 13 August 2023, https://doi.org/10.5067/OE8BDP5KU30Q.
Petty A. A., N. Keeney, A. Cabaj, P. Kushner, and M. Bagnardi, 2023: Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere, 17, 127-156, https://doi.org/10.5194/tc-17-127-2023.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017.
Sumata, H., L. de Steur, D. V. Divine, M. A. Granskog, and S. Gerland, 2023: Regime shift in Arctic Ocean sea ice thickness. Nature, 615, 442-449, https://doi.org/10.1038/s41586-022-05686-x.
Tschudi, M., W. N. Meier, and J. S. Stewart, 2019a: Quicklook Arctic Weekly EASE-Grid Sea Ice Age, Version 1. [September, 2023]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 5 September 2023, https://doi.org/10.5067/2XXGZY3DUGNQ.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019b: EASE-Grid Sea Ice Age, Version 4. [September, 1984-2022]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 5 September 2023, https://doi.org/10.5067/UTAV7490FEPB.
Sea Surface Temperature
Banzon, V., T. M. Smith, M. Steele, B. Huang, and H. -M. Zhang, 2020: Improved estimation of proxy sea surface temperature in the Arctic. J. Atmos. Ocean. Tech., 37, 341-349, https://doi.org/10.1175/JTECH-D-19-0177.1.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Climate, 34(8), 2923-2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. [1982-2021]. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, accessed 10 September 2022, https://doi.org/10.7265/efmz-2t65.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. [1982-2021], accessed 10 September 2022, https://doi.org/10.7265/tgam-yv28.
Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318, https://doi.org/10.5194/essd-5-311-2013.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, and see http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.
Timmermans, M. -L., and Z. M. Labe, 2022: Sea surface temperature. Arctic Report Card 2022, M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., https://doi.org/10.25923/p493-2548.
Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline
Anderson, D. M., and Coauthors, 2022: Harmful algal blooms in the Alaskan Arctic: An emerging threat as the ocean warms. Oceanography, 35(3/4), 130-139, https://doi.org/10.5670/oceanog.2022.121.
Ardyna, M., and K. R. Arrigo, 2020: Phytoplankton dynamics in a changing Arctic Ocean. Nat. Climate Change, 10, 892-903 (2020), https://doi.org/10.1038/s41558-020-0905-y.
Ardyna, M., and Coauthors, 2020: Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Front. Mar. Sci., 7, 608032, https://doi.org/10.3389/fmars.2020.608032.
Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20, https://doi.org/10.4319/lo.1997.42.1.0001.
Bélanger, S., M. Babin, and J. -É. Tremblay, 2013: Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences, 10, 4087-4101, https://doi.org/10.5194/bg-10-4087-2013.
Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea level: Effects on physicochemical parameters. Climate Change and Marine and Freshwater Toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany, https://doi.org/10.1515/9783110333596-003.
Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Oceans, 122, 6883-6900, https://doi.org/10.1002/2017JC012768.
Frey, K. E., J. C. Comiso, L. V. Stock, L. N. C. Young, L. W. Cooper, and J. M. Grebmeier, 2023: A comprehensive satellite-based assessment across the Pacific Arctic Distributed Biological Observatory shows widespread late-season sea surface warming and sea ice declines with significant influences on primary productivity. PLoS ONE, 18(7), e0287960, https://doi.org/10.1371/journal.pone.0287960.
Fujiwara, A., and Coauthors, 2018: Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf. Polar Biol., 41, 1279-1295, https://doi.org/10.1007/s00300-018-2284-7.
Juranek, L. W., B. Hales, N. L. Beaird, M. A. Goñi, E. Shroyer, J. G. Allen, and A. E. White, 2023: The importance of subsurface productivity in the Pacific Arctic gateway as revealed by high-resolution biogeochemical surveys. J. Geophys. Res.-Oceans, 128, e2022JC019292, https://doi.org/10.1029/2022JC019292.
Lewis, K. M., and K. R. Arrigo, 2020: Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2019JC015706, https://doi.org/10.1029/2019JC015706.
Manizza, M., 2023: Carbon streams into the deep Arctic Ocean. Nat. Geosci., 16, 6-7, https://doi.org/10.1038/s41561-022-01102-1.
Møller, E. F., A. Christensen, J. Larsen, K. D. Mankoff, M. H. Ribergaard, M. Sejr, P. Wallhead, and M. Maar, 2023: The sensitivity of primary productivity in Disko Bay, a coastal Arctic ecosystem, to changes in freshwater discharge and sea ice cover. Ocean Sci., 19, 403-420, https://doi.org/10.5194/os-19-403-2023.
Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3.
Tank, S. E., and Coauthors, 2023: Recent trends in the chemistry of major northern rivers signal widespread Arctic change. Nat. Geosci., 16, 789-796, https://doi.org/10.1038/s41561-023-01247-7.
Terhaar, J., R. Lauerwald, P. Regnier, N. Gruber, and L. Bopp, 2021: Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun., 12, 169, https://doi.org/10.1038/s41467-020-20470-z.
Tundra Greenness
Bartsch, A., and Coauthors, 2021: Expanding infrastructure and growing anthropogenic impacts along Arctic coasts. Environ. Res. Lett., 16, 115013, https://doi.org/10.1088/1748-9326/ac3176.
Berner, L. T., and S. J. Goetz, 2022: Satellite observations document trends consistent with a boreal forest biome shift. Global Change Biol., 28(10), 3275-3292, https://doi.org/10.1111/gcb.16121.
Didan, K., 2021a: MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD13A1.061.
Didan, K., 2021b: MODIS/Aqua Vegetation Indices 16-Day L3 Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MYD13A1.061.
Erlandsson, R., M. K. Arneberg, H. Tømmervik, E. A. Finne, L. Nilsen, and J. W. Bjerke, 2023: Feasibility of active handheld NDVI sensors for monitoring lichen ground cover. Fungal Ecol., 63, 101233, https://doi.org/10.1016/j.funeco.2023.101233.
Foster, A. C., and Coauthors, 2022: Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses. Environ. Res. Lett., 17, 113001, https://doi.org/10.1088/1748-9326/ac98d7.
Heijmans, M. M. P. D., and Coauthors, 2022: Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ., 3, 68-84, https://doi.org/10.1038/s43017-021-00233-0.
Huemmrich, K. F., J. Gamon, P. Campbell, M. Mora, S. Vargas Z, B. Almanza, and C. Tweedie, 2023: 20 years of change in tundra NDVI from coupled field and satellite observations. Environ. Res. Lett., 18, 094022, https://doi.org/10.1088/1748-9326/acee17.
Magnússon, R. Í., F. Groten, H. Bartholomeus, K. van Huissteden, and M. M. P. D. Heijmans, 2023: Tundra browning in the Indigirka Lowlands (north-eastern Siberia) explained by drought, floods and small-scale vegetation shifts. J. Geophys. Res.-Biogeosci., 128, e2022JG007330, https://doi.org/10.1029/2022JG007330.
Mekonnen, Z. A., and Coauthors, 2021: Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett., 16, 053001, https://doi.org/10.1088/1748-9326/abf28b.
Pinzon, J. E., E. W. Pak, C. J. Tucker, U. S. Bhatt, G. V. Frost, and M. J. Macander, 2023: Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981-2022 [Data set]. ORNL DAAC, Oak Ridge, TN, USA, https://doi.org/10.3334/ORNLDAAC/2187.
Polyakov, I. V., R. B. Ingvaldsen, A. V. Pnyushkov, U. S. Bhatt, J. A. Francis, M. Janout, R. Kwok, and Ø. Skagseth, 2023: Fluctuating Atlantic inflows modulate Arctic atlantification. Science, 381, 972-979, https://doi.org/10.1126/science.adh5158.
Raynolds, M. K., and Coauthors, 2019: A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297.
Rogers, A., S. P. Serbin, and D. A. Way, 2022: Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Global Change Biol., 28, 1222-1247, https://doi.org/10.1111/gcb.15958.
Spiegel, M. P., A. Volkovitskiy, A. Terekhina, B. C. Forbes, T. Park, and M. Macias-Fauria, 2023: Top-down regulation by a reindeer herding system limits climate-driven Arctic vegetation change at a regional scale. Earth’s Future, 11, e2022EF003407, https://doi.org/10.1029/2022EF003407.
Permafrost Beneath Arctic Ocean Margins
Angelopoulos, M., P. P. Overduin, F. Miesner, M. N. Grigoriev, and A. A. Vasiliev, 2020: Recent advances in the study of Arctic submarine permafrost. Permafrost Periglacial Processes, 31, 442-453, https://doi.org/10.1002/ppp.2061.
Bogoyavlensky, V., A. Kishankov, A. Kazanin, and G. Kazanin, 2022: Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Mar. Petrol. Geol., 138, 105527, https://doi.org/10.1016/j.marpetgeo.2022.105527.
Brothers, L. L., B. M. Herman, P. E. Hart, and C. D. Ruppel, 2016: Subsea ice-bearing permafrost on the US Beaufort margin: 1. Minimum seaward extent defined from multichannel seismic reflection data. Geochem. Geophys. Geosyst., 17, 4354-4365, https://doi.org/10.1002/2016GC006584.
Farquharson, L., D. Mann, T. Rittenour, P. Groves, G. Grosse, and B. Jones, 2018: Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology, 46, 783-786, https://doi.org/10.1130/g40345.1.
Grob, H., M. Riedel, M. J. Duchesne, S. Krastel, J. Bustamante, G. Fabien-Ouellet, Y. K. Jin, and J. K. Hong, 2023: Revealing the extent of submarine permafrost and gas hydrates in the Canadian Arctic Beaufort Sea using seismic reflection indicators. Geochem. Geophys. Geosyst., 24, e2023GC010884, https://doi.org/10.1029/2023GC010884.
Hu, K., D. R. Issler, Z. Chen, and T. A. Brent, 2013: Permafrost investigation by well logs, and seismic velocity and repeated shallow temperature surveys, Beaufort-Mackenzie Basin. Natural Resources Canada/CMSS/Information Management, Open File 6956, https://doi.org/10.4095/293120.
Nazarov, D. V., O. A. Nikolskaia, I. V. Zhigmanovskiy, M. V. Ruchkin, and A. A. Cherezova, 2022: Lake Yamal, an ice-dammed megalake in the West Siberian Arctic during the Late Pleistocene, ~60-35 ka. Quat. Sci. Rev., 289, 107614, https://doi.org/10.1016/j.quascirev.2022.107614.
Ogorodov, S., V. Arkhipov, O. Kokin, A. Marchenko, P. Overduin, and D. Forbes, 2013: Ice effect on coast and seabed in Baydaratskaya Bay, Kara Sea. Geogr. Environ. Sustain., 6, 21-37, https://doi.org/10.24057/2071-9388-2013-6-3-21-37.
Overduin, P. P., and Coauthors, 2019: Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). J. Geophys. Res.-Oceans, 124, 3490-3507, https://doi.org/10.1029/2018jc014675.
Paull, C. K., and Coauthors, 2007: Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophys. Res. Lett., 34, L01603, https://doi.org/10.1029/2006gl027977.
Paull, C. K., S. R. Dallimore, Y. K. Jin, and H. Melling, 2022: Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. Proc. Natl. Acad. Sci., 119, e2119105119, https://doi.org/10.1073/pnas.2119105119.
Portnov, A., A. J. Smith, J. Mienert, G. Cherkashov, P. Rekant, P. Semenov, P. Serov, and B. Vanshtein, 2013: Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. Geophys. Res. Lett., 40, 3962-3967, https://doi.org/10.1002/grl.50735.
Portnov, A., J. Mienert, and P. Serov, 2014: Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. J. Geophys. Res.-Biogeosci., 119, 2082-2094, https://doi.org/10.1002/2014jg002685.
Rekant, P., H. A. Bauch, T. Schwenk, A. Portnov, E. Gusev, V. Spiess, G. Cherkashov, and H. Kassens, 2015: Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: a synoptic insight from acoustic data of the Laptev Sea. Arktos, 1, 11, https://doi.org/10.1007/s41063-015-0011-y.
Ruppel, C. D., B. M. Herman, L. L. Brothers, and P. E. Hart, 2016: Subsea ice-bearing permafrost on the U.S. Beaufort margin: 2. Borehole constraints. Geochem. Geophys. Geosyst., 17, 4333-4353, https://doi.org/10.1002/2016GC006582.
Ruppel, C. D., and J. D. Kessler, 2017: The interaction of climate change and methane hydrates. Rev. Geophys., 55, 126-168, https://doi.org/10.1002/2016RG000534.
Serov, P., A. Portnov, J. Mienert, P. Semenov, and P. Ilatovskaya, 2015: Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. J. Geophys. Res.-Earth Surf., 120, 1515-1529, https://doi.org/10.1002/2015jf003467.
Taylor, A. E., S. R. Dallimore, P. R. Hill, D. R. Issler, S. Blasco, and F. Wright, 2013: Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial. J. Geophys. Res.-Earth Surf., 118, 2365-2379, https://doi.org/10.1002/2013jf002859.
Wilkenskjeld, S., F. Miesner, P. P. Overduin, M. Puglini, and V. Brovkin, 2022: Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change. Cryosphere, 16, 1057-1069, https://doi.org/10.5194/tc-16-1057-2022.
Nunaaqqit Savaqatigivlugich: Working with Communities to Observe the Arctic
Alaska Arctic Observatory and Knowledge Hub, 2023: AAOKH News. Issue 8, Winter 2023, https://arctic-aok.org/2023/02/21/hot-off-the-press-check-out-our-winter-2023-newsletter.
Breton-Honeyman, K., and Coauthors, 2021: Beluga whale stewardship and collaborative research practices among Indigenous peoples in the Arctic. Polar Res., 40(S1), https://doi.org/10.33265/polar.v40.5522.
Carothers, C., and Coauthors, 2021: Indigenous peoples and salmon stewardship: a critical relationship. Ecol. Soc., 26(1), 16, https://doi.org/10.5751/ES-11972-260116.
Danielsen, F., and Coauthors, 2020: Community-based monitoring in the Arctic. University Press of Colorado, Denver, CO, https://upcolorado.com/university-of-alaska-press/item/6022-community-based-monitoring-in-the-arctic.
Druckenmiller, M. L., H. Eicken, J. C. George, and L. Brower, 2013: Trails to the whale: reflections of change and choice on an Iñupiat icescape at Barrow, Alaska. Polar Geogr., 36, 5-29, https://doi.org/10.1080/1088937X.2012.724459.
Eicken, H., and Coauthors, 2021: Connecting top-down and bottom-up approaches in environmental observing. BioScience, 71, 467-483, https://doi.org/10.1093/biosci/biab018.
Ellam Yua, J. Raymond-Yakoubian, R. A. Daniel, and C. Behe, 2022: A framework for co-production of knowledge in the context of Arctic research. Ecol. Soc., 27(1), 34, https://doi.org/10.5751/ES-12960-270134.
Fox, S., E. Qillaq, I. Angutikjuak, D. J. Tigullaraq, R. Kautuk, H. Huntington, G. E. Liston, and K. Elder, 2020: Connecting understandings of weather and climate: steps towards co-production of knowledge and collaborative environmental management in Inuit Nunangat. Arct. Sci., 6, 267-278, https://doi.org/10.1139/as-2019-0010.
Glenn, R. G., D. D. W. Hauser, M. DeLue, B. Adams, J. Leavitt, G. Omnik, S. Patkotak, R. Schaeffer, and C. SimsKayotuk, 2022: Insights from Coastal Arctic Indigenous Observers, ArcGIS StoryMap available online, https://storymaps.arcgis.com/stories/30d30ab062ea4aadb39b3734dd7770ae.
Hauser, D. D. W., and Coauthors, 2021: Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett., 16, 095003, https://doi.org/10.1088/1748-9326/ac1a36.
Hauser, D. D. W., and Coauthors, 2023: Nunaaqqit Savaqatigivlugich—working with communities: evolving collaborations around an Alaska Arctic observatory and knowledge hub. Arct. Sci., 9, 635-656, https://doi.org/10.1139/as-2022-0044.
Inuit Circumpolar Council, 2022: Circumpolar Inuit Protocols for Equitable and Ethical Engagement, Technical report available online, https://www.inuitcircumpolar.com/project/circumpolar-inuit-protocols-for-equitable-and-ethical-engagement/.
Knapp, C. N., and S. F. Trainor, 2015: Alaskan stakeholder-defined research needs in the context of climate change. Polar Geogr., 38, 42-69, https://doi.org/10.1080/1088937X.2014.999844.
Observers of Coastal Arctic Alaska, 2022: Local Observations from the Seasonal Ice Zone Observing Network (SIZONet) and Alaska Arctic Observatory and Knowledge Hub (AAOKH), Version 2. Edited by the AAOKH Team, National Snow and Ice Data Center, Boulder, CO, https://doi.org/10.7265/jhws-b380.
Simonee, N., J. Alooloo, N. A. Carter, G. Ljubicic, and J. Dawson, 2021: Sila Qanuippa? (How’s the weather?): integrating Inuit Qaujimajatuqangit and environmental forecasting products to support travel safety around Pond Inlet, Nunavut, in a changing climate. Wea. Climate Soc., 13, 933-962, https://doi.org/10.1175/WCAS-D-20-0174.1.
Peatlands and Associated Boreal Forests of Finland Under Restoration
Bradshaw, C. J., and I. G. Warkentin, 2015: Global estimates of boreal forest carbon stocks and flux. Global Planet. Change, 128, 24-30, https://doi.org/10.1016/j.gloplacha.2015.02.004.
Drever, C. R., and Coauthors, 2021: Natural climate solutions for Canada. Sci. Adv., 7, eabd6034, https://doi.org/10.1126/sciadv.abd6034.
Haapalehto, T. O., H. Vasander, S. Jauhiainen, T. Tahvanainen, and J. S. Kotiaho, 2011: The effects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restor. Ecol., 19, 587-598, https://doi.org/10.1111/j.1526-100X.2010.00704.x.
Huntington, H. P., and Coauthors, 2017: How small communities respond to environmental change: patterns from tropical to polar ecosystems. Ecol. Soc., 22(3), 9, https://doi.org/10.5751/ES-09171-220309.
IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H. -O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844.
Jarma, A., 2022: Biodiversity in Linnunsuo’s Area. Ecological Monitoring Report, available on request from Snowchange Cooperative, www.snowchange.org.
Järvitaimentyöryhmä, 2018: Vuoksen vesistöalueen järvitaimenkantojen toimenpideohjelma: Pohjois-Savon elinkeino-, liikenne- ja ympäristökeskus (Management Programme for the Brown Trout in Vuoksi Water Area, in Finnish).
Koljonen, M. -L., and Coauthors, 2022: Genetic structure of landlocked salmon, brown trout and European grayling in the River Vuoksi catchment (FIN-RUS). Natural resources and bioeconomy studies 77/2022, Natural Resources Institute Finland, Helsinki, 47 p.
Korhonen, K. T., and Coauthors, 2021: Forests of Finland 2014-2018 and their development 1921-2018. Silva Fenn., 55(5), 10662, https://doi.org/10.14214/sf.10662.
Laiho, R., S. Tuominen, S. Kojola, T. Penttilä, M. Saarinen, and A. Ihalainen, 2016: Heikkotuottoiset ojitetut suometsät – missä ja paljonko niitä on? Metsätieteen aikakauskirja (Yearbook of Forest Sciences – in Finnish).
Mustonen, T., and H. Kontkanen, 2019: Safe places: Increasing Finnish waterfowl resilience through human-made wetlands. Polar Sci., 21, 75-84, https://doi.org/10.1016/j.polar.2019.05.007.
Mustonen, T., A. Scherer, and J. Kelleher, 2022: We belong to the land: review of two northern rewilding sites as a vehicle for equity in conservation. Humanit. Soc. Sci. Commun., 9, 402, https://doi.org/10.1057/s41599-022-01424-w.
Perino, A., and Coauthors, 2019: Rewilding complex ecosystems. Science, 364(6438), eaav5570, https://doi.org/10.1126/science.aav5570.
Tiira, 2023: National Bird Monitoring Database, Birdlife Finland, available at www.tiira.fi, accessed 10 November, 2023.
Divergent Responses of Western Alaska Salmon to a Changing Climate
AFN (Alaska Federation of Natives), 2022 AFN Resolutions. https://www.nativefederation.org/wp-content/uploads/2023/04/Final-2022-Resolutions.2.pdf (Accessed 2 October 2023).
BLM (Bureau of Land Management), 2023: Gravel to Gravel Keystone Initiative. https://www.blm.gov/programs/aquatic-resources/alaska/gravel-gravel-keystone-initiative (Accessed 1 September 2023).
Brown, C. L., and A. R. Godduhn (Eds.), 2015: Socioeconomic effects of declining salmon runs on the Yukon River (Technical Paper No. 398). Alaska Department of Fish and Game, Division of Subsistence, http://www.adfg.alaska.gov/techpap/TP398.pdf.
Carothers, C., and Coauthors, 2021: Indigenous peoples and salmon stewardship: a critical relationship. Ecol. Soc., 26, 16, https://doi.org/10.5751/es-11972-260116.
Cline, T. J., J. Ohlberger, and D. E. Schindler, 2019: Effects of warming climate and competition in the ocean for life-histories of Pacific salmon. Nat. Ecol. Evol., 3, 935-942, https://doi.org/10.1038/s41559-019-0901-7.
Cunningham, C. J., P. A. H. Westley, and M. D. Adkison, 2018: Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model. Global Change Biol., 24, 4399-4416, https://doi.org/10.1111/gcb.14315.
Dann, T. H., H. A. Hoyt, E. M. Lee, E. K. C. Fox, and M. B. Foster, 2023: Genetic stock composition of chum salmon harvested in commercial salmon fisheries of the South Alaska Peninsula, 2022. Alaska Department of Fish and Game, Special Publication No. 23-07, Anchorage, https://www.adfg.alaska.gov/FedAidPDFs/SP23-07.pdf.
Farley, E. V., Jr., E. M. Yasumiishi, J. M. Murphy, W. Strasburger, F. Sewall, K. Howard, S. Garcia, and J. H. Moss, 2024: Critical periods in the marine life history of juvenile western Alaska chum salmon in a changing climate. Mar. Ecol. Prog. Ser., 726, 149-160, https://doi.org/10.3354/meps14491.
Feddern, M. L., and Coauthors, 2023: Kings of the north: Bridging disciplines to understand the effects of changing climate on Chinook salmon in the Arctic-Yukon-Kuskokwim region. Fisheries, 48, 331-343, https://doi.org/10.1002/fsh.10923.
Herz, N., 2023: Fish hatcheries, long seen as a last resort, get a new look amid Yukon River salmon crisis. Northern Journal, 7 April 2023. https://northernjournal.substack.com/p/fish-hatcheries-long-seen-as-a-last?utm_source=post-email-title&publication_id=1057678&post_id=113385992&isFreemail=true&utm_medium=email.
Howard, K. G., and V. von Biela, 2023: Adult spawners: A critical period for subarctic Chinook salmon in a changing climate. Global Change Biol., 29, 1759-1773, https://doi.org/10.1111/gcb.16610.
JTC (Joint Technical Committee of the Yukon River U.S./Canada Panel), 2023: Yukon River salmon 2022 season summary and 2023 season outlook. Alaska Department of Fish and Game, https://www.yukonriverpanel.com/download/13/joint-technical-committee-reports/3775/yukon-jtc-23-01-2022-season-review-2023-outlook.pdf.
Manishin, K. A., C. J. Cunningham, P. A. H. Westley, and A. C. Seitz, 2021: Can late stage marine mortality explain observed shifts in age structure of Chinook salmon? PLoS One, 16, e0247370, https://doi.org/10.1371/journal.pone.0247370.
Murdoch, A. D., B. M. Connors, N. W. R. Lapointe, J. Mills Flemming, S. J. Cooke, and C. Mantyka-Pringle, 2023: Multiple environmental drivers across life-stages influence Yukon River Chinook salmon productivity. Can. J. Fish. Aquat. Sci., https://doi.org/10.1139/cjfas-2022-0254.
Murphy, J., and Coauthors, 2021: Northern Bering Sea surface trawl and ecosystem survey cruise report, 2019. U.S. Department of Commerce, NOAA Tech. Memo, NMFS-AFSC-423, 124 p., https://repository.library.noaa.gov/view/noaa/32075.
NOAA (National Oceanic and Atmospheric Administration), 2023: Fishery Disaster Determinations. https://www.fisheries.noaa.gov/national/funding-and-financial-services/fishery-disaster-determinations (Accessed 29 September 2023).
Ohlberger, J., E. J. Ward, D. E. Schindler, and B. Lewis, 2018: Demographic changes in Chinook salmon across the Northeast Pacific Ocean. Fish Fish., 19, 533-546, https://doi.org/10.1111/faf.12272.
Ohlberger, J., D. E. Schindler, R. J. Brown, J. M. S. Harding, M. D. Adkison, A. R. Munro, L. Horstmann, and J. Spaeder, 2020: The reproductive value of large females: consequences of shifts in demographic structure for population reproductive potential in Chinook salmon. Can. J. Fish. Aquat. Sci., 77(8), 1292-1301, https://doi.org/10.1139/cjfas-2020-0012.
Ohlberger, J., T. J. Cline, D. E. Schindler, and B. Lewis, 2023: Declines in body size of sockeye salmon associated with increased competition in the ocean. Proc. Roy. Soc. B.-Biol. Sci., 290, 20222248, https://doi.org/10.1098/rspb.2022.2248.
Oke, K. B., and Coauthors, 2020: Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun., 11, 4155, https://doi.org/10.1038/s41467-020-17726-z.
Ruggerone, G. T., A. M. Springer, G. B. van Vliet, B. Connors, J. R. Irvine, L. D. Shaul, M. R. Sloat, and W. I. Atlas, 2023: From diatoms to killer whales: impacts of pink salmon on North Pacific ecosystems. Mar. Ecol. Prog. Ser., 719, 1-40, https://doi.org/10.3354/meps14402.
Sakati, C., 2023: Fishing in the desert: Modernizing Alaskan salmon management to protect fisheries and preserve fishers’ livelihoods. Alaska Law Review, 40, 137-169, https://scholarship.law.duke.edu/alr/vol40/iss1/6/.
Siegel, J. E., M. V. McPhee, and M. D. Adkison, 2017: Evidence that marine temperatures influence growth and maturation of western Alaskan Chinook salmon. Mar. Coast. Fish., 9, 441-456, https://doi.org/10.1080/19425120.2017.1353563.