Search ×

Arctic Report Card: Update for 2022

The warming Arctic reveals shifting seasons, widespread disturbances, and the value of diverse observations

Archive of previous Arctic Report Cards >

2022 Arctic Report Card Home >

Arctic Report Card 2022

Vital Signs

Other Indicators


More Information

Arctic Essays


Surface Air Temperature

Ballinger, T. J., and Coauthors, 2021: Surface air temperature. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds.,

Chylek, P., C. Folland, J. D. Klett, M. Wang, N. Hengartner, G. Lesins, and M. K. Dubey, 2022: Annual mean Arctic amplification 1970-2020: Observed and simulated by CMIP6 climate models. Geophys. Res. Lett., 49, e2022GL099371,

England, M. R., I. Eisenman, N. J. Lutsko, and T. J. W. Wagner, 2021: The recent emergence of Arctic amplification. Geophys. Res. Lett., 48, e2021GL094086,

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049,

Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004,

Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res.-Atmos., 124, 6307-6326,

Mamen, J., H. T. T. Tajet, and K. Tunheim, 2022: Klimatologisk månedsoversikt, June 2022, MET info no. 6/2022 (In Norwegian), ISSN 1894-759X.

NOAA National Weather Service (NWS), 2022: NOWData - NOAA Online Weather Data [Cold Bay Area & King Salmon Area], accessed 12 September 2022,

Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2021: Land surface air temperature variations across the globe updated to 2019: the CRUTEM5 dataset. J. Geophys. Res.-Atmos., 126, e2019JD032352,

Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett., 16, 093003,

Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Env., 3, 168,

Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324,

Yu, Y., W. Xiao, Z. Zhang, X. Cheng, F. Hui, and J. Zhao, 2021: Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the arctic during 2010-2020. Remote Sens., 13, 2813,

Terrestrial Snow Cover

Brown, R. D., and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8, 024006,

Brown, R., and Coauthors, 2017: Arctic terrestrial snow cover. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. pp. 25-64. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219,

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137-142,

Gelaro, R., and Coauthors, 2017: The Modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454,

GMAO (Global Modeling and Assimilation Office), 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GESDISC), accessed: 16 August 2022,

Luojus, K., and Coauthors, 2022: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979 - 2020), version 2.0. NERC EDS Centre for Environmental Data Analysis, accessed: 16 August 2022,

Meredith, M., and Coauthors, 2019: Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H. -O. Pörtner, and co-editors, in press,

Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 1579-1594,

Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919-926,

Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 2495-2514,

Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 8 September 2022,

Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 [r01]. NOAA National Centers for Environmental Information, accessed: 16 August 2022,

U.S. National Ice Center, 2008: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, accessed: 22 Aug 2022,


Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf , K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data, 5(1), 71-99,

Hersbach, H. B., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 146, 1999-2049,

Hurtado, S. I., 2020: RobustLinearReg: Robust Linear Regressions. R package version 1.2.0,

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2-6,, in press.

Kusunoki, S., R. Mizuta R., and M. Hosaka, 2015: Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size. Polar Sci., 9, 277-292,

Loeb, N. A., A. Crawford, J. C. Stroeve, and J. Hanesiak, 2022: Extreme precipitation in the eastern Canadian Arctic and Greenland: An evaluation of atmospheric reanalyses. Front. Env. Sci., 10, 866929,

McCrystall, M., J. Stroeve, M. C. Serreze, B. C. Forbes, and J. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12(1), 6765,

Schneider, U., P. Finger, E. Rustemeier, M. Ziese, and S. Hänsel, 2022: Global precipitation analysis products of the GPCC,

Sillmann J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res.-Atmos., 118, 2473-2493,

Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324,

White, J., J. E. Walsh, and R. L. Thoman, Jr., 2021: Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol., 41(3), 2045-2059,

Ye, H., D. Yang, A. Behrangi, S. L. Stuefer, X. Pan, E. Mekis, Y. Dibike, and J. E. Walsh, 2021: Precipitation Characteristics and Changes. Chapter 2 in Arctic Hydrology, Permafrost and Ecosystems (D. Yang and D.L. Kane, Eds.), Springer Nature Switzerland, 914 pp.,

Yu, L., and S. Zhong, 2021: Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145, 1541-1559,

Greenland Ice Sheet

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). GEUS Bull., 38, 53-56,

Hopwood, M. J., and Coauthors, 2020: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere, 14, 1347-1383,

Kokhanovsky, A., J. E. Box, B. Vandecrux, K. D. Mankoff, M. Lamare, A. Smirnov, and M. Kern, 2020: The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens., 12, 234,

MacFerrin, M., and Coauthors, 2019: Rapid expansion of Greenland's low-permeability ice slabs. Nature, 573, 403-407,

Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367-1383,

Mankoff, K. D., and Coauthors, 2021: Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001-5025,

Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11051-11061,

Mote, T. L., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507,

Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland ice sheet mass balance from 1972 to 2018. P. Natl. Acad. Sci., 116(19), 9239-9244,

Ryan, J. C., L. C. Smith, D. van As, S. W. Cooley, M. G. Cooper, L. H. Pitcher, and A. Hubbard, 2019: Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv., 5, eaav3738,

van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wa, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. GEUS Bull., 35, 71-74,

Wehrlé, A., J. E. Box, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bull., 47, 5284,

Sea Ice

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 27 August 2022,

Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883-6900,

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, accessed 2 October 2022,

Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens., 52(11), 7233-7246,

Kern, S., T. Lavergne, D. Notz, L. T. Pedersen, R. T. Tonboe, R. Saldo, and A. M.Sørensen, 2019: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations. Cryosphere, 13, 3261-3307,

Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49-78,

Meier, W. N., J. S. Stewart, H. Wilcox, M. A. Hardman, and D. J. Scott, 2021: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 2 [Data Set]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 2 October 2022,

Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res.-Oceans, 125, e2019JC015764,

Petty, A. A., N. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2021: ICESat-2 L4 Monthly Gridded Sea Ice Thickness, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 9 September 2022,

Petty, A. A., N. Keeney, A. Cabaj, P. Kushner, and M. Bagnardi, 2022: Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere Discuss,, in review.

Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623,

Sumata, H., L. de Steur, S. Gerland, D. V. Divine, and O. Pavlova, 2022: Unprecedented decline of Arctic sea ice outflow in 2018. Nat. Comm., 13, 1747,

Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: EASE-Grid Sea Ice Age, Version 4. [March, 1984-2020]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 1 September 2022,

Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook Arctic Weekly EASE-Grid Sea Ice Age, Version 1. [March, 2021]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, accessed 3 October 2022,

Tschudi, M. A., W. N. Meier, and J.S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere, 14, 1519-1536,

Sea Surface Temperature

Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Climate, 34(8), 2923-2939,

Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. [1982-2021]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, accessed 10 September 2022,

Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. [1982-2021], accessed 10 September 2022,

Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318,

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625,<1609:AIISAS>2.0.CO;2.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496,, and see

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res.-Oceans, 120, 7223-7236,

Timmermans, M. -L., and Z. M. Labe, 2021: Sea surface temperature. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds.,

Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline

Ardyna, M., M. Babin, E. Devered, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132,

Ardyna M., and Coauthors, 2020: Under-ice phytoplankton blooms: Shedding light on the "invisible" part of Arctic primary production. Front. Mar. Sci., 7, 608032,

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20,

Bouman, H. A., T. Jackson, S. Sathyendranath, and T. Platt, 2020: Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean. Philos. Trans. Roy. Soc. A, 378, 20190351,

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea level: Effects on physicochemical parameters. Climate and Fresh Water Toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany,

Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Oceans, 122, 6883-6900,

Cooper L. W., and J. M. Grebmeier, 2022: A chlorophyll biomass time-series for the Distributed Biological Observatory in the context of seasonal sea ice declines in the Pacific Arctic region. Geosciences, 12(8), 307,

Crawford, A. D., K. M. Krumhardt, N. S. Lovenduski, G. L. Van Dijken, and K. R. Arrigo, 2020: Summer high-wind events and phytoplankton productivity in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2020JC016565,

Frey, K. E., J. C. Comiso, L. W. Cooper, J. M. Grebmeier, and L. V. Stock, 2021: Arctic ocean primary productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds.,

Gaffey, C. B., K. E. Frey, L. W. Cooper, and J. M. Grebmeier, 2022: Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea. PLoS ONE, 17, e0267586,

Holding, J. M., and Coauthors, 2015: Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nat. Climate Change, 5, 1079-1082,

Hopwood, M. J., and Coauthors, 2020: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere, 14, 1347-1383,

Lewis, K. M., and K. R. Arrigo, 2020: Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean. J. Geophys. Res.-Oceans, 125, e2019JC015706,

Mundy, C. J., and Coauthors, 2009: Contribution of under-ice primary production to an ice edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett., 36, L17601,

Popova, E. E., A. Yool, A. C. Coward, Y. K. Aksenov, S. G. Alderson, A. de Cuevas, and T. R. Anderson, 2010: Control of primary production in the Arctic by nutrients and light: insights from a high-resolution ocean general circulation model. Biogeosciences, 7, 3569-3591,

Terhaar, J., R. Lauerwald, P. Regnier, N. Gruber, and L. Bopp, 2021: Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Comm., 12, 169,

von Appen, W. J., and Coauthors, 2021: Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations. Nat. Comm., 12, 7309,

Tundra Greenness

Berner, L. T., and S. J. Goetz, 2022: Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol., 28(10), 3275-3292,

Bhatt, U. S., and Coauthors, 2021: Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett., 16, 055019,

CAVM Team, 2003: Circumpolar Arctic vegetation map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 U.S. Fish and Wildlife Service, Anchorage, AK.

Christensen, T. R., and Coauthors, 2021: Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems, 24, 122-136,

Dial, R. J., C. T. Maher, R. E. Hewitt, and P. F. Sullivan, 2022: Sufficient conditions for rapid range expansion of a boreal conifer. Nature, 608, 546-551,

Heijmans, M. M. P. D., and Coauthors, 2022: Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ., 3, 68-84,

Jorgenson, M. T., and Coauthors, 2022: Rapid transformation of tundra ecosystems from ice-wedge degradation. Global Planet. Change, 216, 103921,

Macander, M. J., P. R. Nelson, T. W. Nawrocki, G. V. Frost, K. M. Orndahl, E. C. Palm, A. F. Wells, and S. J. Goetz, 2022: Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environ. Res. Lett., 17, 054042,

Magnússon, R. Í., A. Hamm, S. V. Karsanaev, J. Limpens, D. Kleijn, A. Frampton, T. C. Maximov, and M. M. P. D. Heijmans, 2022: Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nat. Commun., 13, 1556,

Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960,

Rogers, A., S. P. Serbin, and D. A. Way, 2022: Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Glob. Change Biol., 28, 1222-1247,

Seider, J. H., T. C. Lantz, T. Hermosilla, M. A. Wulder, and J. A. Wang, 2022: Biophysical determinants of shifting tundra vegetation productivity in the Beaufort Delta region of Canada. Ecosystems,

Yang, D., and Coauthors, 2022: Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate. J. Ecol.,

Satellite Record of Pan-Arctic Maritime Ship Traffic

Arctic Council, 2009: Arctic Marine Shipping Assessment 2009 Report, 187 pp,

Arctic Council, 2013: Vision for the Arctic, 6 pp,

Arctic Council, 2022: Arctic Ship Traffic Data. Accessed 27 September 2022,

Berkman, P. A., and O. R. Young, 2009: Governance and environmental change in the Arctic Ocean. Science, 324, 339-340,

Berkman, P. A., L. Kullerud, A. Pope, A. N. Vylegzhanin, and O. R. Young, 2017: The Arctic Science Agreement propels science diplomacy. Science, 358, 596-598,

Berkman, P. A., G. Fiske, J.-A. Royset, L. W. Brigham, and D. Lorenzini, 2020a: Next-generation Arctic marine shipping assessments. Governing Arctic Seas: Regional Lessons from the Bering Strait and Barents Sea, Vol. 1, O. R. Young, P. A. Berkman, and A. N. Vylegzhanin, Eds., Springer Nature, 241-268.

Berkman, P. A., G. Fiske, and D. Lorenzini, 2020b: Baseline of Next-Generation Arctic Marine Shipping Assessments - Oldest Continuous Pan-Arctic Satellite Automatic Identification System (AIS) Data Record of Maritime Ship Traffic, 2009-2016,

Berkman, P. A., J. M. Grebmeier, G. Fiske, and L. L. Jørgenson, 2022a: Satellite observations of maritime ship traffic to enhance implementation of binding agreements in the Arctic Ocean, Arctic Observing Summit 2022, Trømso, Norway, 1-5,

Berkman, P. A., G. Fiske, J. M. Grebmeier, and A. N. Vylegzhanin, 2022b: Maritime ship traffic in the Central Arctic Ocean High Seas as a case study with informed decisionmaking. Building Common Interests in the Arctic Ocean with Global Inclusion, Vol. 2, P. A. Berkman, A. N. Vylegzhanin, O. R. Young, D. A. Balton, and O. R. Øvretveit, Eds., Springer Nature, 321-346.

IMO, 2021. Further shipping GHG emission reduction measures adopted. International Maritime Organization, London. 17 June 2021,

Kapsar, K., B. Sullender, J. Liu, and A. Poe, 2022: North Pacific and Arctic marine traffic dataset (2015-2022). Data in Brief, 44, 108531,

NASA, 2018: Shipping Responds to Arctic Ice Decline. Accessed 25 September 2022,

Sheffield, G., A. Ahmasuk, F. Ivanoff, A. Noongwook, and J. Koonooka, 2021: 2020 Foreign Marine Debris Event—Bering Strait. NOAA Technical Report OAR ARC; 21-12, 8 pp,

Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. P. Natl. Acad. Sci., 10, 6-10,

Stafford, K. M., 2021: The Changing Arctic Marine Soundscape. NOAA Technical Report OAR ARC; 21-14,

Theocharis, D., S. Pettit, V. S. Rodrigues, and J. Haider, 2018: Arctic shipping: A systematic literature review of comparative studies. J. Transp. Geogr., 69, 112-128,

United Nations, 1982: Convention on the Law of the Sea. (Signed: Montego Bay, 10 December 1982; Entry into Force: 16 November 1994),

Lake Ice

Arp, C. M., and Coauthors, 2019: Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arct. Antarct. Alp. Res., 51(1), 9-23,

Brown, L. C., and C. R. Duguay, 2010: The response and role of ice cover in lake-climate interactions. Prog. Phys. Geog., 34, 671-704,

Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 5 September 2022,!/home.

Dauginis, A. L., and L. C. Brown, 2021: Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing. Cryosphere, 15, 4781-4805,

Du, J., J. S. Kimball, C. R. Duguay, Y. Kim, and J. Watts, 2017: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11, 47-63,

Duguay, C. R., and L. Brown, 2018: Lake Ice. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds.,

Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix, and P. Ménard, 2006: Recent trends in Canadian lake ice cover. Hydrol. Process., 20, 781-801,

Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586,

Natural Earth , 2022: Free vector and raster map data @ Accessed: 18 Aug 2022,

U.S. National Ice Center, 2008: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 3. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center, accessed: 18 Aug 2022,

Arctic Geese of North America

Alaska Division of Environmental Health, 2022: Highly pathogenic avian influenza (HPAI) outbreaks and biosecurity toolkit from USDA APHIS. Accessed 26 September 2022,

Alisauskas, R. T., and Coauthors, 2022: Subpopulation contributions to a breeding metapopulation of migratory arctic herbivores: survival, fecundity and asymmetric dispersal. Ecography, 2022(7), e05653,

Fox, A. D., and J. O. Leafloor (eds.), 2018: A global audit of the status and trends of Arctic and Northern Hemisphere goose populations. Conservation of Arctic Flora and Fauna International Secretariat: Akureyri, Iceland. ISBN 978-9935-431-66-0.

Hupp, J. W., D. H. Ward, D. X. Soto, and K. A. Hobson, 2018: Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming. Glob. Change Biol., 24, 5056-5071,

Lefebvre, J., G., Gauthier, J. F., Giroux, A. Reed, E. T. Reed, and L. Bélanger, 2017: The greater snow goose Anser caerulescens atlanticus: Managing an overabundant population. Ambio, 46, 262-274,

Olson, S. J., 2021: Pacific Flyway Data Book, 2021: U.S. Department of the Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Vancouver, Washington.

Overton, C. T., and Coauthors, 2022: Megafires and thick smoke portend big problems for migratory birds. Ecology, 103(1), e03552,

Parrett, J. P., T. Obritschkewitsch, and R. W. McNown, 2021: Avian studies for the Alpine Satellite Development Project, 2021, ABR, Inc. Available at:

Ruthrauff, D. R., V. P. Patil, J. W. Hupp, and D. H. Ward, 2021: Life-history attributes of Arctic-breeding birds drive uneven responses to environmental variability across different phases of the reproductive cycle. Ecol. Evol., 11, 18514-18530,

Tape, K. D., P. L. Flint, B. W. Meixell, and B. V. Gaglioti, 2013: Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska. Environ. Res. Lett., 8, 045031,

U.S. Fish and Wildlife Service, 2020: Migratory bird subsistence harvest in Alaska; updates to the regulations: Federal Register, 85 FR 73233, FWS-R7-MB-2-2-0022.

U.S. Fish and Wildlife Service, 2022: Waterfowl population status, 2022. U.S. Department of the Interior, Washington, D.C. USA.

U.S. Geological Survey, 2022: Distribution of highly pathogenic avian influenza H5 and H5N1 in North America, 2021/2022. Accessed 26 September 2022.

VonBank, J. A., M. D. Weegman, P. T. Link, S. A. Cunningham, K. J. Kraai, D. P. Collins, and B. M. Ballard, 2021: Winter fidelity, movements, and energy expenditure of midcontinent greater white-fronted geese. Mov. Ecol., 9, 2,

Weegman, M. D., R. T. Alisauskas, D. K. Kellett, Q. Zhao, S. Wilson, and T. Telenský, 2022: Local population collapse of Ross's and lesser snow geese driven by failing recruitment and diminished philopatry. Oikos, 2022(5), e09184,

Arctic Pollinators

Alaska Center for Conservation Science, 2022: Seward Peninsula bees identified from USGS bycatch. Unpublished data, University of Alaska Anchorage.

Aronsson, M., and Coauthors, 2021: State of the Arctic Terrestrial Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland. ISBN 978-9935-431-94-3.

Åström, S., J. Åström, K. Bøhn, J. O. Gjershaug, A. Staverløkk, S. Dahle, and F. Ødegaard, 2020: Nasjonal overvåking av dagsommerfugler og humler i Norge. Oppsummering av aktiviteten i 2019. (National monitoring of butterflies and bumble bees in Norway. Summary of activities in 2019). NINA Report 1811. Norwegian Institute for Nature Research. Trondheim, May 2020. ISBN: 978-82-426-4569-2.

Canadian Endangered Species Conservation Council, 2016: Wild Species 2015: The General Status of Species in Canada. National General Status Working Group,

Dumesh, S., and C. S. Sheffield, 2014: Illustrated Keys to the Bees of the Northwest Territories, Canada. Government of the Northwest Territories, Culture & Communications.

Gillespie, M. A. K., and Coauthors, 2020a: Circumpolar terrestrial arthropod monitoring: A review of ongoing activities, opportunities and challenges, with a focus on spiders. Ambio, 49, 704-717,

Gillespie M. A. K., and Coauthors, 2020b: Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio, 49, 718-731,

Hodkinson, I. D., 2018: Insect Biodiversity: Science and Society, Volume II. Insect Biodiversity, R. G. Foottit and P. H. Adler, Eds., John Wiley & Sons Ltd., 15-57,

Høye, T. T., 2020: Arthropods and climate change - arctic challenges and opportunities. Curr. Opin. Insect Sci., 41, 40-45,

Høye, T. T., S. Loboda, A. M. Koltz, M. A. K. Gillespie, J. J. Bowden, and N. M. Schmidt, 2021: Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. P. Natl. Acad. Sci., 118(2), e2002557117,

Koch, V., L. Zoller, J. M. Bennett, and T. M. Knight, 2020: Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol., 10(24), 13664-13672,

Layberry, R. A., P. W. Hall, and J. D. Lafontaine, 1998: The Butterflies of Canada. University of Toronto Press, Toronto.

Mann, H. M. R., A. Iosifidis, J. U. Jepsen, J. M. Welker, M. J. J. E. Loonen, and T. T. Høye, 2022: Automatic flower detection and phenology monitoring using time-lapse cameras and deep learning. Remote Sens. Ecol. Conserv.,

Philip, K. W., and C. D. Ferris, 2016: Butterflies of Alaska: A Field Guide. 2nd ed. Alaska Entomological Society.

Potapov, G. S., and Coauthors, 2021: The last refugia for a polar relict pollinator: isolates of Bombus glacialis on Novaya Zemlya and Wrangel Island indicate its broader former range in the Pleistocene. Polar Biol., 44, 1691-1709,

Rykken, J., 2017: Insect pollinators of Gates of the Arctic NPP: A preliminary survey of bees (Hymenoptera: Anthophila) and flower flies (Diptera: Syrphidae). Natural Resource Report NPS/GAAR/NRR-2017/1541. National Park Service, Fort Collins, CO.

Tiusanen, M., P. D. N. Hebert, N. M. Schmidt, and T. Roslin, 2016: One fly to rule them all-muscid flies are the key pollinators in the Arctic. P. Roy. Soc. B.-Biol. Sci., 283, 20161271,

University of Alaska Museum, 2021: Arctos database., accessed February 2021.

Lessons from Oceans Melting Greenland, a NASA Airborne Mission

An, L., E. Rignot, M. Wood, J. K. Willis, J. Mouginot, and S. A. Khan, 2020: Ocean melting of the Zachariae Isstrøm and Nioghalvfjerdsfjorden glaciers, northeast Greenland. P. Natl. Acad. Sci., 118(2), e2015483118,

Choi, Y., and Coauthors, 2021: Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Commun. Earth Env., 2, 26,

Holland, D. M., R. H. Thomas, B. De Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659-664,

Khazendar, A., and Coauthors, 2019: Interruption of two decades of Jakobshavn Isbræ acceleration and thinning as regional ocean cools. Nat. Geosci., 12, 277-283,

Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44, 11,051- 11,061,

Rignot, E., and Coauthors, 2021: Retreat of Humboldt Gletscher, north Greenland, driven by undercutting from a warmer ocean. Geophys. Res. Lett., 48, e2020GL091342,

Snow, T., and Coauthors, 2021: More than skin deep: Sea surface temperature as a means of inferring Atlantic Water variability on the southeast Greenland continental shelf near Helheim Glacier. J. Geophys. Res.-Oceans, 126(4),

Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504, 36-43,

Straneo F., and Coauthors, 2019: The case for a sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS). Front. Mar. Sci., 6, 138,

Weller R. A., D. J. Baker, M. M. Glackin, S. J. Roberts, R. W. Schmitt, E.S. Twigg, and D. J. Vimont, 2019: The challenge of sustaining ocean observations. Front. Mar. Sci., 6, 105,

Wood, M., and Coauthors, 2021: Ocean forcing drives glacier retreat in Greenland. Sci. Adv., 7, eaba7282,

Partnering in Search of Answers: Seabird Die-offs in the Bering and Chukchi Seas

Ainly, D., and Coauthors, 2002: Common murre (Uria aalge), The Birds of North America, No. 666., A. Poole and F. Gill, Eds., The Birds of North America, Inc. Philadelphia, PA.

Bodenstein, B., and Coauthors, 2015: Avian cholera causes marine bird mortality in the Bering Sea of Alaska. J. Wildlife Dis., 51, 934-937,

Bodenstein, B. L., R. J. Dusek, M. M. Smith, C. R. Van Hemert, and R. S. A. Kaler, 2022: USGS National Wildlife Health Center necropsy results to determine cause of illness/death for seabirds collected in Alaska from January 1, 2017 through December 31, 2021: U.S. Geological Survey data release,

Duffy-Anderson, J. T., and Coauthors, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46, 9833-9842,

Jones, T., and Coauthors, 2019: Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE, 14, e0216532,

Kokubun, N., and Coauthors, 2018: Inter-annual climate variability affects foraging behavior and nutritional state of thick-billed murres breeding in the southeastern Bering Sea. Mar. Ecol. Prog. Ser., 593, 195-208,

Montevecchi, W. A., and J. F. Piatt, 1984: Composition and energy content of mature inshore spawning capelin (Mallotus villosus): Implications for seabird predators. Comp. Biochem. Phys. A, 78(1), 10-20,

Renner, M., and Coauthors, 2016: Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea. Biol. Letters, 12, 20160276,

Robards, M., M. Willson, R. Armstrong, and J. Piatt, 1999: Sand lance as cornerstone prey for predator populations. USDA Forest Service - Research Papers PNW-RP, 17-44.

Romano, M., J. F. Piatt, D. D. Roby, 2006: Testing the junk-food hypothesis on marine birds: Effects of prey type on growth and development. Waterbirds, 29(4), 407-524,[407:TTJHOM]2.0.CO;2.

Romano, M., and Coauthors, 2020: Die-offs, reproductive failure, and changing at-sea abundance of murres in the Bering and Chukchi Seas in 2018. Deep-Sea Res. Pt. II, 181-182, 104877,

Stabeno, P. J., R. L. Thoman, and K. Wood, 2019: Recent warming in the Bering Sea and its impacts on the ecosystem. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds.,

US Geological Survey, 2022: Wildlife Health Information Sharing Partnership—event reporting system (WHISPers) on-line database, accessed October 2022,

Van Hemert, C., and Coauthors, 2021: Investigation of algal toxins in a multispecies seabird die-off in the Bering and Chukchi seas. J. Wildlife Dis., 57(2), 399-407,

Will, A., and Coauthors, 2020a: Investigation of the 2018 thick-billed murre (Uria lomvia) die-off on St. Lawrence Island rules out food shortage as the cause. Deep-Sea Res., Pt. II, 181, 104879,

Will, A., and Coauthors, 2020b: The breeding seabird community reveals that recent sea ice loss in the Pacific Arctic does not benefit piscivores and is detrimental to planktivores. Deep-Sea Res., Pt. II, 181-182, 104902,

Consequences of Rapid Environmental Arctic Change for People

Apassingok, M. D., V. K. Metcalf, and B. P. Kelly, 2022: Moving to the back of the boat: how a new approach to Arctic research can help us better understand and respond to environmental change. ArcticToday. September 9, 2022.

Fisher, A. M., B. P. Kelly, and G. W. Kling (eds.), 2020: Arctic Futures 2050 Conference Report. Washington, D.C., Study of Environmental Arctic Change. 48 pp.

Fleischer, N. L., P. Melstrom, E. Yard, M. Brubaker, and T. Thomas, 2014: The epidemiology of falling-through-the-ice in Alaska, 1990-2010. J. Public Health (Oxford), 36(2), 235-242,

Harper, S. L., C. Wright, S. Masina, and S. Coggins, 2020: Climate change, water, and human health in the Arctic. Water Secur., 10, 100062,

Huntington, H. P., M. Nelson, and L. T. Quakenbush, 2016: Traditional knowledge regarding ringed seals, bearded seals, and walrus near Shishmaref, Alaska. Final report to the Eskimo Walrus Commission, the Ice Seal Committee, and the Bureau of Ocean Energy Management for contract #M13PC00015. 9 pp.

ICC-Alaska, 2015: Alaskan Inuit Food Security Conceptual Framework: How to Assess the Arctic from an Inuit Perspective: Summary and Recommendations Report, Inuit Circumpolar Council-Alaska,

Johnson, N., and Coauthors, 2021: The Impact of COVID-19 on Food Access for Alaska Natives in 2020. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds.,

Kelly, B. P., and A. M. Fisher, 2021: Complex collaboration tools for a sustainable Arctic. Wither the Arctic Ocean? Research, Knowledge Needs, and Development en Route to the New Arctic, P. Wassman, Ed., Fundación BBVA, 43-51.

Landrum, L., and M. M. Holland, 2020: Extremes become routine in an emerging new Arctic. Nat. Climate Change, 10, 1108-1115,

Metcalf, V. K., 2021: Nangaghneghput – our way of life. Front. Ecol. Environ., 19(8), 427,

Schaeffer, J. Q., 2021: Climate change and its impacts on Indigenous People. Science, Technology and the Path Forward for a New Arctic, J. Kim & O. Young, Eds., Korea Maritime Institute & East-West Center, 118-125.

York, A., U. S. Bhatt, E. Gargulinski, Z. Grabinski, P. Jain, A. Soja, R. L. Thoman, and R. Ziel, 2020: Wildfire in High Northern Latitudes. Arctic Report Card 2020, R. L. Thoman, J. Richter-Menge, and M. L. Druckenmiller, Eds.,



Focus Areas

Arctic Report Card

Tracking recent environmental changes relative to historical records



Conserving and managing our Arctic Ocean resources


Providing weather information to protect lives, property, and management



Observing the Arctic ocean and atmosphere to understand and forecast Arctic change



Providing environmental intelligence to understanding the complex Arctic system



Conserving and managing Arctic living marine resources and their habitats



stay connected

About Our Organization

Issued annually since 2006, the Arctic Report Card is a timely and peer-reviewed source for clear, reliable and concise environmental information on the current state of different components of the Arctic environmental system relative to historical records. The Report Card is intended for a wide audience, including scientists, teachers, students, decision-makers and the general public interested in the Arctic environment and science.

Copyright 2023 by Arctic Program Terms Of Use Privacy Statement
Back To Top