Search
Search ×
Yamal%20fireYamal%20fire

Arctic Report Card: Update for 2020

The sustained transformation to a warmer, less frozen and biologically changed Arctic remains clear

Archive of previous Arctic Report Cards >

2020 Arctic Report Card Home >

About

15-Year Retrospective Analysis on AON

The Observational Foundation of the Arctic Report Card - a 15-Year Retrospective Analysis on the Arctic Observing Network (AON) and Insights for the Future System

Vital Signs

Other Indicators

Frostbites

More Information

Arctic Essays

References

The Observational Foundation of the Arctic Report Card – a 15-Year Retrospective Analysis on the Arctic Observing Network (AON) and Insights for the Future System

Arctic Council (AC), 2009: Arctic Marine Shipping Assessment 2009 Report. B. Ellis and L. Brigham, Eds., 194 pp., https://oaarchive.arctic-council.org/handle/11374/54.

Arctic Council (AC), 2016: Arctic Resilience Report. M. Carson and G. Peterson, Eds. Stockholm Environment Institute and Stockholm Resilience Centre, Stockholm, Sweden, http://www.arctic-council.org/arr.

Arctic Monitoring and Assessment Program (AMAP), 2017: Snow, water, ice and permafrost. Summary for policy-makers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 20 pp., https://www.amap.no/documents/doc/snow-water-ice-and-permafrost.-summary-for-policy-makers/1532.

Arctic Observing Summit Executive Organizing Committee (AOS EOC), 2018: Report of the 4th Arctic Observing Summit: AOS 2018, Davos, Switzerland, 24-26 June 2018. International Study of Arctic Change (ISAC) Program Office, Arctic Institute of North America, Calgary, Canada.

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geol. Surv. Den. Greenl., 38, 53-56.

Conservation of Arctic Flora and Fauna (CAFF), 2017: State of fresh water report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland, https://www.caff.is/freshwater/freshwater-monitoring-publications/488-state-of-the-arctic-freshwater-biodiversity-report-full-report.

Conservation of Arctic Flora and Fauna (CAFF), 2019: State of the arctic marine biodiversity report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland, https://www.caff.is/marine/marine-monitoring-publications/state-of-the-arctic-marine-biodiversity-report.

Fausto, R. S., and D. van As, 2019: Programme for monitoring of the Greenland ice sheet (PROMICE): Automatic weather station data. Version: v03, Dataset published via Geological Survey of Denmark and Greenland, https://doi.org/10.22008/promice/data/aws.

Institute for Defense Analyses (IDA), 2017: International Arctic Observations Assessment Framework. IDA Science and Technology Policy Institute, Washington, DC, U.S.A., and Sustaining Arctic Observing Networks, Oslo, Norway, 73 pp., https://www.arcticobserving.org/news/268-international-arctic-observations-assessment-framework-released.

Intergovernmental Panel on Climate Change (IPCC), 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H. -O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N. M. Weyer (eds.)], in press.

Inuit Circumpolar Council-Canada (ICC), 2008: The Sea Ice is Our Highway: An Inuit Perspective on Transportation in the Arctic. https://www.inuitcircumpolar.com/project/the-sea-ice-is-our-highway-an-inuit-perspective-on-transportation-in-the-arctic/.

Inuit Circumpolar Council (ICC), 2014: The Sea Ice Never Stops: Circumpolar Inuit Reflections on Sea Ice Use and Shipping in Inuit Nunaat. https://www.inuitcircumpolar.com/project/the-sea-ice-never-stops-circumpolar-inuit-reflections-on-sea-ice-use-and-shipping-in-inuit-nunaat/.

Lavergne, T., and Coauthors, 2019: Version 2 of EUMETSAT OSI SAF and ESA CCi sea ice concentration climate data records. Cryosphere, 12, 49-78, https://doi.org/10.5194/tc-13-49-2019.

Lee, C. M., and Coauthors, 2019: A Framework for the development, design and implementation of a sustained Arctic ocean observing system. Front. Mar. Sci., 6, 451, https://doi.org/10.3389/fmars.2019.00451.

Murray, M. S., R. D. Sankar, and G. Ibarguchi, 2018: The Arctic Observing Summit, Background and Synthesis of Outcomes 2013-2016. International Study of Arctic Change (ISAC) Program Office, Arctic Institute of North America, Calgary, Canada.

National Research Council (NRC), 2006: Toward an integrated Arctic Observing Network. The National Academies Press, Washington, DC, https://doi.org/10.17226/11607.

Richter-Menge, J., M. L. Druckenmiller, and M. Jeffries, Eds., 2019: Arctic Report Card 2019, https://www.arctic.noaa.gov/Report-Card.

Surface Air Temperature

Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4.

Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971-2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.

Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 20-29, https://doi.org/10.1038/s41558-019-0662-y.

Hanna, E., and Coauthors, 2020: Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Sci. Rev., 201, 102976, https://doi.org/10.1016/j.earscirev.2019.102976.

Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Myers-Smith, and Coauthors, 2020: Complexity revealed in the greening of the Arctic. Nat. Climate Change, 10, 106-117, https://doi.org/10.1038/s41558-019-0688-1.

Overland, J. E., and M. Wang, 2020: The 2020 Siberian heat wave. Int. J. Climatol., https://doi.org/10.1002/joc.6850.

Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181-184, https://doi.org/10.1038/NGEO2071.

Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300, https://doi.org/10.1029/98GL00950.

Terrestrial Snow Cover

Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726-740.

Brown, R., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean., 41, 1-14.

Brown, R. D., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/W9FOYWH0EQZ3, (last access: 27 July 2020).

Brown, R., D. Vikhamar Schuler, O. Bulygina, C. Derksen, K. Luojus, L. Mudryk, L. Wang, and D. Yang, 2017: Arctic terrestrial snow cover. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 25-64.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219, https://doi.org/10.1175/JHM-D-12-012.1.

Callaghan, T., and Coauthors, 2011: The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio, 40, 17-31, https://doi.org/10.1007/s13280-011-0212-y.

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Sys. Sci. Data, 7(1), 137-142, https://doi.org/10.5194/essd-7-137-2015.

Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

GMAO (Global Modeling and Assimilation Office), 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GESDISC), https://doi.org/10.5067/RKPHT8KC1Y1T, (last access: 26 August 2020).

Helfrich, S., D. McNamara, B. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586.

Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919-926, https://doi.org/10.1002/2016GL071789.

Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 2495-2514, https://doi.org/10.5194/tc-14-2495-2020.

Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1 [r01]. NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5N014G9, (last access: 27 July 2020).

Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. -P. Kärnä, and J. Koskinen, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 3517-3529, https://doi.org/10.1016/j.rse.2011.08.014.

U.S. National Ice Center, 2008: IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N52R3PMC, (last access: 27 July 2020).

Greenland Ice Sheet

Andersen, J. K., and Coauthors, 2019: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999-2018). Geol. Surv. Den. Greenl., 43, e2019430202, https://doi.org/10.34194/GEUSB-201943-02-02.

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geol. Surv. Den. Greenl., 38, 53-56.

Fausto, R. S., and D. van As, 2019: Programme for monitoring of the Greenland ice sheet (PROMICE): Automatic weather station data, version: v03, Geological Survey of Denmark and Greenland, https://doi.org/10.22008/promice/data/aws (last access: 14 September 2020).

Loomis, B. D., S. B. Luthcke, and T. J. Sabaka, 2019a: Regularization and error characterization of GRACE mascons. J. Geodesy, 93, 1381–1398, https://doi.org/10.1007/s00190-019-01252-y.

Loomis, B. D., K. E. Rachlin, and S. B. Luthcke, 2019b: Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett., 46, 6910-6917, https://doi.org/10.1029/2019GL082929.

Loomis, B. D., K. E. Rachlin, D. N. Wiese, F. W. Landerer, and S. B. Luthcke, 2020: Replacing GRACE/GRACE-FO C30 with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett., 47(3), e2019GL085488, https://doi.org/10.1029/2019gl085488.

Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020.

Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11051-11061, https://doi.org/10.1002/2017GL074954.

Mote, T., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.

Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116(19), 9239–9244, https://doi.org/10.1073/pnas.1904242116.

Peltier, W. R., D. F. Argus, and R. Drummond, 2018: Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al. J. Geophys. Res.-Solid Earth, 123, 2019-2018, https://doi.org/10.1002/2016JB013844.

Sasgen, I., and Coauthors, 2020: Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth. Environ., 1, 8, https://doi.org/10.1038/s43247-020-0010-1.

Sun, Y., R. Riva, and P. Ditmar, 2016: Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res.-Solid Earth, 121, 8352–8370, https://doi.org/10.1002/2016JB013073.

Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615-630, https://doi.org/10.5194/tc-7-615-2013.

van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wa, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. GEUS Bull., 35, 71-74, https://doi.org/10.34194/geusb.v35.4942.

van den Broeke, M. R., C. J. P. P. Smeets, and R. S. W. van de Wal, 2011: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet. Cryosphere, 5, 377-390, https://doi.org/10.5194/tc-5-377-2011.

Wahr, J., M. Molenaar, and F. Bryan, 1998: Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res.-Solid Earth, 103(B12), 30205-30229, https://doi.org/10.1029/98JB02844.

Sea Ice

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/8GQ8LZQVL0VL.

Comiso, J.C., W.N. Meier, and R. Gersten, 2017. Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883-6900, https://doi.org/10.1002/2017JC012768.

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, CO, USA, https://doi.org/10.7265/N5K072F8. [Accessed 27 August 2020].

Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens., 52(11), 7233-7246, https://doi.org/10.1109/TGRS.2014.2310136.

Kern, S., T. Lavergne, D. Notz, L. T. Pedersen, R. T. Tonboe, R. Saldo, and A. M. Sørensen, 2019: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations. Cryosphere, 13, 3261-3307, https://doi.org/10.5194/tc-13-3261-2019.

Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49-78, https://doi.org/10.5194/tc-13-49-2019.

Maslanik, J., and J. Stroeve, 1999: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/U8C09DWVX9LM.

Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res.-Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.

Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017.

Spreen, G., L. de Steur, D. Divine, S. Gerland, E. Hansen, and R. Kwok, 2020: Arctic sea ice volume export through Fram Strait from 1992 to 2014. J. Geophys. Res.-Oceans, 125, e2019JC016039, https://doi.org/10.1029/2019JC016039.

Tschudi, M. A., W. N. Meier, and J. S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere, 14, 1519-1536, https://doi.org/10.5194/tc-14-1519-2020.

Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019: EASE-Grid Sea Ice Age, Version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/UTAV7490FEPB.

Wang, C., J. Negrel, S. Gerland, D. V. Divine, P. Dodd, and M. A. Granskog, 2020: Thermodynamics of fast ice off the northeast coast of Greenland (79° N) over a full year (2012-2013). J. Geophys. Res.-Oceans, 125, e2019JC015823, https://doi.org/10.1029/2019JC015823.

Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 1814-1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

Sea Surface Temperature

DeGrandpre, M., W. Evans, M. -L. Timmermans, R. Krishfield, B. Williams, and M. Steele, 2020: Changes in the arctic ocean carbon cycle with diminishing ice cover. Geophys. Res. Lett., 47, e2020GL088051, https://doi.org/10.1029/2020GL088051.

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3: Regional Daily Data. National Snow and Ice Data Center (NSIDC), Boulder, CO, USA, https://doi.org/10.7265/N5K072F8.

Meier, W., J. Stroeve, and F. Fetterer, 2007: Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol., 46, 428-434, https://doi.org/10.3189/172756407782871170.

Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve. 2017: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. [Indicate subset used]. National Snow and Ice Data Center (NSIDC), Boulder, CO, USA, https://doi.org/10.7265/N59P2ZTG.

Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318, https://doi.org/10.5194/essd-5-311-2013.

Polyakov, I. V., and Coauthors, 2020: Weakening of the cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. J. Climate, 33(18), 8107-8123, https://doi.org/10.1175/JCLI-D-19-0976.1.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, and see http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res. Oceans, 120, 7223-7236, https://doi.org/10.1002/2015JC011005.

Timmermans, M. -L., Z. Labe, and C. Ladd, 2020: Sea surface temperature [in "State of the Climate in 2019"]. Bull. Amer. Meteor. Soc., 101(8), S249-S251, https://doi.org/10.1175/BAMS-D-20-0086.1.

Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline

Ardyna, M., M. Babin, E. Devred, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132, https://doi.org/10.1002/lno.10554.

Arrigo, K. R., and Coauthors, 2012: Massive phytoplankton blooms under Arctic sea ice. Science, 336, 1408, https://doi.org/10.1126/science.1215065.

Barber, D. G., and Coauthors, 2015: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr., 139, 122-150, https://doi.org/10.1016/j.pocean.2015.09.003.

Behrenfeld, M. J., and E. Boss, 2006: Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J. Mar. Res., 64, 431-451.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20.

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea levels: effects on physicochemical parameters. Climate and fresh water toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany.

Comiso, J. C., R. A. Gersten, L. V. Stock, J. Turner, G. J. Perez, and K. Cho, 2017a: Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J. Climate, 30, 2251-2267, https://doi.org/10.1175/JCLI-D-16-0408.1 .

Comiso, J. C., W. N. Meier, and R. Gersten, 2017b: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Oceans, 122, 6883-6900, https://doi.org/10.1002/2017JC012768.

Duffy-Anderson, J. T., and Coauthors, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46, 9833-9842, https://doi.org/10.1029/2019GL083396.

Frey, K. E., J. C. Comiso, L. W. Cooper, J. M. Grebmeier and L. V. Stock, 2018: Arctic Ocean Primary Productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Frey, K. E., J. C. Comiso, L. W. Cooper, J. M. Grebmeier and L. V. Stock, 2019: Arctic Ocean Primary Productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Giesbrecht, K. E., D. E. Varela, J. Wiktor, J. M. Grebmeier, B. Kelly, and J. E. Long, 2019: A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep-Sea Res. Part II Top. Stud. Oceanogr., 162, 93-113, https://doi.org/10.1016/j.dsr2.2018.06.010.

Henley, S. F., M. Porter, L. Hobbs, J. Braun, R. Guillaume-Castel, E. J. Venables, E. Dumont, and F. Cottier, 2020: Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers. Philos. Trans. Royal Soc. A, 378, 20190361, https://doi.org/10.1098/rsta.2019.0361.

Hill, V., M. Ardyna, S. H. Lee, and D. E. Varela, 2018: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Res. Part II Top. Stud. Oceanogr., 152, 82-94, https://doi.org/10.1016/j.dsr2.2016.12.015.

Lalande, C., J. M. Grebmeier, R. R. Hopcroft and S. Danielson, 2020: Annual cycle of export fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea. Deep-Sea Res. Part II Top. Stud. Oceanogr., 177, 104730, https://doi.org/10.1016/j.dsr2.2020.104730.

Lalande, C., E. -M. Nöthig, and L. Fortier, 2019: Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett., 46, 5959-5967, https://doi.org/10.1029/2019GL083167.

Leu, E., C. J. Mundy, P. Assmy, K. Campbell, T. M. Gabrielsen, M. Gosselin, T. Juul-Pedersen, and R. Gradinger, 2015: Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr., 139, 151-170, https://doi.org/10.1016/j.pocean.2015.07.012.

Lewis, K. M., G. L. van Dijken, and K. R. Arrigo, 2020: Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369, 198-202, https://doi.org/10.1126/science.aay8380.

Neeley, A. R., L. A. Harris, and K. E. Frey, 2018: Unraveling phytoplankton community dynamics in the northern Chukchi Sea under sea‐ice‐covered and sea‐ice‐free conditions. Geophys. Res. Lett., 45, 7663-7671, https://doi.org/10.1029/2018GL077684.

Randelhoff, A., and Coauthors, 2020: Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci. Adv., 6, eabc2678, https://doi.org/10.1126/sciadv.abc2678.

Stabeno, P., and S. W. Bell, 2019: Extreme conditions in the Bering Sea (2017-2018): record-breaking low sea-ice extent. Geophys. Res. Lett., 46, 8952-8959, https://doi.org/10.1029/2019GL083816.

Tremblay J. -É., L. G. Anderson, P. Matrai, P. Coupel, S. Bélanger, C. Michel, and M. Reigstad, 2015: Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr., 139, 171-196, https://doi.org/10.1016/j.pocean.2015.08.009.

Tundra Greenness

Andreu-Hayles, L., B. V. Gaglioti, L. T. Berner, M. Levesque, K. J. Anchukaitis, S. J. Goetz, and R. D'Arrigo, 2020: A narrow window of summer temperatures associated with shrub growth in Arctic Alaska. Environ. Res. Lett., 15, 105012, https://doi.org/10.1088/1748-9326/ab897f.

Andruko, R., R. Danby, and P. Grogan, 2020: Recent growth and expansion of birch shrubs across a Low Arctic landscape in continental Canada: Are these responses more a consequence of the severely declining caribou herd than of climate warming? Ecosystems, 23, 1362-1379, https://doi.org/10.1007/s10021-019-00474-7.

Arndt, K. A., and Coauthors, 2019: Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett., 14, 125018, https://doi.org/10.1088/1748-9326/ab5e26.

Assmann, J. J., I. Myers-Smith, J. Kerby, A. M. Cunliffe, and G. N. Daskalova, 2020: Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett., 15, 125002, https://doi.org/10.1088/1748-9326/abbf7d.

Beamish, A., and Coauthors, 2020: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ., 246, 111872, https://doi.org/10.1016/j.rse.2020.111872.

Berner, L. T., and Coauthors, 2020: Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun., 11, 4621, https://doi.org/10.1038/s41467-020-18479-5.

Bhatt, U., and Coauthors, 2010: Circumpolar Arctic tundra vegetation change linked to sea ice decline. Earth Interact., 14, 1-20, https://doi.org/10.1175/2010EI315.1.

Bhatt, U., and Coauthors, 2013: Recent declines in warming and vegetation greening trends over Pan-Arctic tundra. Remote Sens., 5, 4229-4254, https://doi.org/10.3390/rs5094229.

Bieniek, P. A., and Coauthors, 2015: Climate drivers linked to changing seasonality of Alaska coastal tundra vegetation productivity. Earth Interact., 19, 1-29, https://doi.org/10.1175/EI-D-15-0013.1.

Bjorkman, A. D., and Coauthors, 2018: Plant functional trait change across a warming tundra biome. Nature, 562, 57-62, https://doi.org/10.1038/s41586-018-0563-7.

Bjorkman, A. D., and Coauthors, 2020: Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio, 49, 678-692, https://doi.org/10.1007/s13280-019-01161-6.

Bokhorst, S. F., J. W. Bjerke, H. Tømmervik, T. V. Callaghan, and G. K. Phoenix, 2009: Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol., 97, 1408-1415, https://doi.org/10.1111/j.1365-2745.2009.01554.x.

Bronen, R., D. Pollock, J. Overbeck, D. Stevens, S. Natali, and C. Maio, 2020: Usteq: integrating indigenous knowledge and social and physical sciences to coproduce knowledge and support community-based adaptation. Polar Geogr., 43, 188-205, https://doi.org/10.1080/1088937X.2019.1679271.

Cao, R., Y. Feng, X. Liu, M. Shen, and J. Zhou, 2020: Uncertainty of vegetation green-up date estimated from vegetation indices due to snowmelt at northern middle and high latitudes. Remote Sens., 12, 190, https://doi.org/10.3390/rs12010190.

Cunliffe, A. M., J. J. Assmann, G. Daskalova, J. T. Kerby, and I. H. Myers-Smith: Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ. Res. Lett., 15(12), 125004, https://doi.org/10.1088/1748-9326/aba470.

Duncan, B. N., and Coauthors, 2020: Space-based observations for understanding changes in the Arctic-boreal zone. Rev. Geophys., 58, e2019RG000652, https://doi.org/10.1029/2019RG000652.

Farquharson, L. M., V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V. Kokelj, and D. Nicolsky, 2019: Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett., 46, 6681-6689, https://doi.org/10.1029/2019GL082187.

Frost, G. V., R. A. Loehman, L. B. Saperstein, M. J. Macander, P. R. Nelson, D. P. Paradis, and S. M. Natali, 2020: Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett., 15, 025003, https://doi.org/10.1088/1748-9326/ab5f49.

Grünberg, I., E. J. Wilcox, S. Zwieback, P. Marsh, and J. Boike, 2020: Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences, 17, 4261-4279, https://doi.org/10.5194/bg-17-4261-2020.

Herman-Mercer, N. M., R. A. Loehman, R. C. Toohey, and C. Paniyak, 2020: Climate- and disturbance-driven changes in subsistence berries in coastal Alaska: Indigenous knowledge to inform ecological inference. Hum. Ecol., 48, 85-99, https://doi.org/10.1007/s10745-020-00138-4.

Hewitt, R. E., D. L. Taylor, H. Genet, A. D. McGuire, and M. C. Mack, 2019: Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. J. Ecol., 107, 950-962, https://doi.org/10.1111/1365-2745.13062.

Hu, F. S., P. E. Higuera, P. Duffy, M. L. Chipman, A. V. Rocha, A. M. Young, R. Kelly, and M. C. Dietze, 2015: Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ., 13, 369-377, https://doi.org/10.1890/150063.

Hugelius, G., and Coauthors, 2020: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. P. Natl. A. Sci., 117, 20438-20446, https://doi.org/10.1073/pnas.1916387117.

Kwon, E., and Coauthors, 2019: Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr., 89, e01383, https://doi.org/10.1002/ecm.1383.

Lawrence, D. M., A. G. Slater, R. A. Tomas, M. M. Holland, and C. Deser, 2008: Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35, L11506, https://doi.org/10.1029/2008GL033985.

Lund, M., K. Raundrup, A. Westergaard-Nielsen, E. López-Blanco, J. Nymand, and P. Aastrup, 2017: Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio, 46, 26-38, https://doi.org/10.1007/s13280-016-0863-9.

Miller, C. E., and Coauthors, 2019: An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environ. Res. Lett., 14, 080201, https://doi.org/10.1088/1748-9326/ab0d44.

Myers-Smith, I. H., and Coauthors, 2020: Complexity revealed in the greening of the Arctic. Nat. Climate Change, 10, 106-117, https://doi.org/10.1038/s41558-019-0688-1.

Natali, S. M., and Coauthors, 2019: Large loss of CO2 in winter observed across the northern permafrost region. Nat. Climate Change, 9, 852-857, https://doi.org/10.1038/s41558-019-0592-8.

National Academies of Sciences, Engineering and Medicine, 2019: Understanding northern latitude vegetation greening and browning: proceedings of a workshop, A. Melvin, Ed. The National Academies Press.

Overland, J. E., E. Hanna, I. Hanssen-Bauer, S. -J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman, 2018: Surface Air Temperature. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Overland, J. E., E. Hanna, I. Hanssen-Bauer, S. -J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, R. L. Thoman, and T. J. Ballinger, 2019: Surface Air Temperature. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds., http://www.arctic.noaa.gov/Report-Card.

Park, T., and Coauthors, 2016: Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett., 11, 084001, https://doi.org/10.1088/1748-9326/11/8/084001.

Park, T., and Coauthors, 2019: Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol., 25, 2382-2395, https://doi.org/10.1111/gcb.14638.

Phoenix, G. K., and J. W. Bjerke, 2016: Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol., 22, 2960-2962, https://doi.org/10.1111/gcb.13261.

Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960, https://doi.org/10.3390/rs6086929.

Post, E., and Coauthors, 2019: The polar regions in a 2°C warmer world. Sci. Advances, 5, eaaw9883, https://doi.org/10.1126/sciadv.aaw9883.

Prendin, A. L., and Coauthors, 2020: Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. J. Biogeogr., 47, 87-100, https://doi.org/10.1111/jbi.13644.

Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403-411, https://doi.org/10.1080/01431161.2011.609188.

Richter-Menge, J., and Coauthors, 2006: State of the Arctic Report. NOAA/OAR/PMEL, https://www.arctic.noaa.gov/Report-Card/Report-Card-Archive.

Rocha, A. V., and G. R. Shaver, 2011: Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity. Glob. Change Biol., 17, 2831-2841, https://doi.org/10.1111/j.1365-2486.2011.02441.x.

Shevtsova, I., B. Heim, S. Kruse, J. Schröder, E. I. Troeva, L. A. Pestryakova, E. S. Zakharov, and U. Herzschuh, 2020: Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ. Res. Lett., 15, 085006, https://doi.org/10.1088/1748-9326/ab9059.

Siewert, M. B., and J. Olofsson, 2020: Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett., 15, 094030, https://doi.org/10.1088/1748-9326/aba20b.

Skarin, A., M. Verdonen, T. Kumpula, M. Macias-Fauria, M. Alam, J. T. Kerby, and B. C. Forbes, 2020: Reindeer use of low Arctic tundra correlates with landscape structure. Environ. Res. Lett., 15, 115012, https://doi.org/10.1088/1748-9326/abbf15.

Thomas, H. J. D., and Coauthors, 2020: Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun., 11, 1351, https://doi.org/10.1038/s41467-020-15014-4.

Treharne, R., J. W. Bjerke, H. Tømmervik, and G. K. Phoenix, 2020: Extreme event impacts on CO2 fluxes across a range of high latitude, shrub-dominated ecosystems. Environ. Res. Lett., 15, 104084, https://doi.org/10.1088/1748-9326/abb0b1.

Turetsky, M. R., and Coauthors, 2019: Permafrost collapse is accelerating carbon release. Nature, 569, 32-34, https://doi.org/10.1038/d41586-019-01313-4.

Turetsky, M. R., and Coauthors, 2020: Carbon release through abrupt permafrost thaw. Nat. Geosci., 13, 138-143, https://doi.org/10.1038/s41561-019-0526-0.

Verdonen, M., L. T. Berner, B. C. Forbes, and T. Kumpula, 2020: Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett., 15, 105020, https://doi.org/10.1088/1748-9326/abb500.

Vikhamar-Schuler, D., K. Isaksen, J. E. Haugen, H. Tømmervik, B. Luks, T. V. Schuler, and J. W. Bjerke, 2016: Changes in winter warming events in the Nordic arctic region. J. Climate, 29, 6223-6244, https://doi.org/10.1175/JCLI-D-15-0763.1.

Walker, D. A., and Coauthors, 2005: The circumpolar Arctic vegetation map. J. Veg. Sci., 16, 267-282.

Wilcox, E. J., D. Keim, T. de Jong, B. Walker, O. Sonnentag, A. E. Sniderhan, P. Mann, and P. Marsh, 2019: Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arctic Sci., 5, 202-217, https://doi.org/10.1139/as-2018-0028.

Wu, W., X. Sun, H. Epstein, X. Xu, and X. Li, 2020: Spatial heterogeneity of climate variation and vegetation response for Arctic and high-elevation regions from 2001-2018. Environ. Res. Commun., 2, 011007, https://doi.org/10.1088/2515-7620/ab6369.

Xu, X., W. J. Riley, C. D. Koven, and G. Jia, 2019: Heterogeneous spring phenology shifts affected by climate: supportive evidence from two remotely sensed vegetation indices. Environ. Res. Commun., 1, 091004, https://doi.org/10.1088/2515-7620/ab3d79.

Xu, X., W. J. Riley, C. D. Koven, G. Jia, and X. Zhang, 2020: Earlier leaf-out warms air in the north. Nat. Climate Change, 10, 370-375, https://doi.org/10.1038/s41558-020-0713-4.

Yang, D., and Coauthors, 2020: A multi-sensor Unoccupied Aerial System improves characterization of vegetation composition and canopy properties in the Arctic tundra. Remote Sens., 12, 2638, https://doi.org/10.3390/rs12162638.

Glaciers and Ice Caps Outside Greenland

Bieniek, P. A., and J. E. Walsh, 2017: Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska. Int. J. Climatol., 37, 208-217, https://doi.org/10.1002/joc.4994.

Gardner, A. S., and Coauthors, 2011: Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473, 357-360, https://doi.org/10.1038/nature10089.

Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003-2009. Science, 340, 852-857, https://doi.org/10.1126/science.1234532.

Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, 2012: Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514-518, https://doi.org/10.1038/nature10847.

Kjøllmoen, B., L. M. Andreassen, H. Elvehøy, and M. Jackson, 2019: Glaciological investigations in Norway 2018, NVE Rapport 46-2019, 84 pp +app.

Millan, R., J. Mouginot, and E. Rignot, 2017: Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada from 1991-2015. Environ. Res. Lett., 12, 024016, https://doi.org/10.1088/1748-9326/aa5b04.

O'Neel, S., and Coauthors, 2019: Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into climate forcing of glacier mass balance. J. Glaciol., 65(253), 850-866, https://doi.org/10.1017/jog.2019.66.

Overland, J. E., E. Hanna, I. Hanssen-Bauer, S. -J. Kim, J. E. Walsh, M. Wang, and U. S. Bhatt, 2019: Surface air temperature [in "State of the Climate in 2018"]. Bull. Amer. Meteor. Soc., 100(9), S142-S143, https://doi.org/10.1175/2019BAMSStateoftheClimate.1.

Overland, J. E., T. J. Ballinger, E. Hanna, I. Hanssen-Bauer, S. -J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman, 2020: Surface air temperature [in "State of the Climate in 2018"]. Bull. Amer. Meteor. Soc., 101(7), S8-S10, https://doi.org/10.1175/2020BAMSStateoftheClimate.1.

Pfeffer, W. T., and Coauthors, 2014: The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537-552, https://doi.org/10.3189/2014JoG13J176.

van Pelt, W., and Coauthors, 2019: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957-2018). Cryosphere, 13, 2259-2280, https://doi.org/10.5194/tc-13-2259-2019.

WGMS, 2017: Global Glacier Change Bulletin No. 2 (2014-2015). M. Zemp, S. U. Nussbaumer, I. Gärtner-Roer, J. Huber, H. Machguth, F. Paul, and M. Hoelzle (Eds.), ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 244 pp. Based on database version: https://doi.org/10.5904/wgms-fog-2017-10.

Wouters, B., A. S. Gardner, and G. Moholdt, 2019: Global glacier mass loss during the GRACE satellite mission (2002-2016). Front. Earth Sci., 7, 96, https://doi.org/10.3389/feart.2019.00096.

Zemp, M., and Coauthors, 2019: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382-386, https://doi.org/10.1038/s41586-019-1071-0.

Bowhead Whales: Recent Insights Into Their Biology, Status, and Resilience

Ashjian, C. J., R. G. Campbell, and S. R. Okkonen, 2021: Biological environment. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Baird, A. B., and J.W. Bickham, 2021: The stocks of bowheads. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Ball, H. C., R. K. Holmes, R. L. Londraville, J. G. Thewissen, and R. J. Duff, 2013: Leptin in whales: validation and measurement of mRNA expression by absolute quantitative real-time PCR. Plos One, 8(1), p.e54277.

Blackwell, S. B., and A. M. Thode, 2021: Effects of noise. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Breed, G. A., 2021: Predators and impacts of predation. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Burns, J. J., 1993: Epilog. In: Burns, J. J., Montague, J. and C. J. Cowles (eds.). The Bowhead Whale. Society for Marine Mammalogy, 787 pp.

Chambault, P., C. M. Albertsen, T. A. Patterson, R. G. Hansen, O. Tervo, K. L. Laidre, and M. P. Heide-Jørgensen, 2018: Sea surface temperature predicts the movements of an Arctic cetacean: the bowhead whale. Sci. Rep., 8(1), 9658, https://doi.org/10.1038/s41598-018-27966-1.

Citta, J. J., and Coauthors, 2018: Oceanographic characteristics associated with bowhead whale movements in the Chukchi Sea in autumn. Deep-Sea Res. II, 152, 121-131. https://doi.org/10.1016/j.dsr2.2017.03.009.

Cooper, L. N., and V. Gorbunova, 2021: Molecular insights into anatomy and physiology. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

George, J. C., M. L. Druckenmiller, K. L. Laidre, R. Suydam, and B. Person, 2015: Bowhead whale body condition and links to summer sea ice and upwelling in the Beaufort Sea. Prog. Oceanogr., 136, 250-262, https://doi.org/10.1016/j.pocean.2015.05.001.

George, J. C., J. G. M. Thewissen, A. Von Duyke, G. A. Breed, R. Suydam, T. L. Sformo, B. T. Person, and H.K. Brower, Jr., 2021a: Life history, growth, and form. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

George, J. C., L. Horstmann, S. Fortune, Todd L. Sformo, R. Elsner, and E. Follmann. 2021b. Thermoregulation and energetics. In: George, J.C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

George, J. C., G. Sheffield, D. J. Reed, B. Tudor, R. Stimmelmayr, B. T. Person, T. Sformo, and R. Suydam, 2017: Frequency of injuries from line entanglements, killer whales, and ship strikes on Bering-Chukchi-Beaufort Seas bowhead whales. Arctic, 70(1), 37-46, https://doi.org/10.14430/arctic4631.

George, J. C., G. Sheffield, B. J. Tudor, R. Stimmelmayr, and M. Moore, 2021c: Fishing gear entanglement and vessel collisions. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Givens, G. H., and Coauthors, 2016: Horvitz-Thompson whale abundance estimation adjusting for uncertain recapture, temporal availability variation, and intermittent effort. Environmetrics, 27(3), 134-146, https://doi.org/10.1002/env.2379.

Givens, G. H., and M. P. Heide-Jørgensen, 2021: Abundance. In: George, J. C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Huntington, H. P., and Coauthors, 2020: Evidence suggests potential transformation of the Pacific Arctic Ecosystem is underway. Nat. Climate Change, 10, 342–348, https://doi.org/10.1038/s41558-020-0695-2.

Keane, M., and Coauthors, 2015: Insights into the evolution of longevity from the bowhead whale genome. Cell Rep., 10(1), 112-122, https://doi.org/10.1016/j.celrep.2014.12.008.

Lewis, K. M., G. L. van Kijken, and K. R. Arrigo, 2020: Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369, 198-202, https://doi.org/10.1126/science.aay8380.

Moore, S. E., and K. L. Laidre, 2006: Trends in sea ice cover within habitats used by bowhead whales in the western arctic. Ecol. Appl., 16(3), 932-944.

Moore, S. E., and R. R. Reeves, 2018: Tracking arctic marine mammal resilience in an era of rapid ecosystem alteration. PLOS Biol., 16, e2006708, https://doi.org/10.1371/journal.pbio.2006708.

Moore, S. E., T. Haug, G. A. Víkingsson, and G. B. Stenson, 2019: Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr., 176, 102118, https://doi.org/10.1016/j.pocean.2019.05.010.

Moore, S. E., J. C. George, and R. R. Reeves, 2021: Bowhead whale ecology in changing high-latitude ecosystems. In: George, J.C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Reeves, R. R., and Coauthors, 2014: Distribution of endemic cetaceans in relation to hydrocarbon development and commercial shipping in a warming Arctic. Mar. Policy, 44, 375-389.

Rehorek, S. J., R. Stimmelmayr, J. C. George, R. Suydam, D. M. McBurney, and J. G. M. Thewissen, 2020: The role of desmosomes in the ear plug formation in the bowhead whale (Balaena mysticetus). Anat. Rec., 303, 3035-3043, https://doi.org/10.1002/ar.24338.

Stabeno, P. J., R. L. Thoman, and K. Wood, 2019: Recent warming in the Bering Sea and its impact on the ecosystem. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Stimmelmayr, R., D. Rotstein, G. Sheffield, H. K. Brower, Jr., and J. C. George, 2021: Diseases and parasites. In: George, J.C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Suydam, R., and J. C. George, 2021: Current indigenous whaling. In: George, J.C. and J. G. M. Thewissen, Eds. The Bowhead Whale, Balaena mysticetus, Biology and Human Interactions. Academic Press.

Willoughby, A. L., M. C. Ferguson, R. Stimmelmayr, J. T. Clarke, and A. A. Brower, 2020: Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the US Pacific Arctic, 2009-2018: evidence from bowhead whale carcasses. Polar Biol., 43, 1669-1679, https://doi.org/10.1007/s00300-020-02734-y.

Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr., 160, 124-154, https://doi.org/10.1016/j.pocean.2017.12.007.

Coastal Permafrost Erosion

Aré, F., 1988: Thermal abrasion of sea coasts. Polar Geography and Geology, 12, 1-157.

Belova, N. G., A. V. Novikova, F. Günther, and N. N. Shabanova, 2020: Spatiotemporal variability of coastal retreat rates at western Yamal Peninsula, Russia, based on remotely sensed data. J. Coastal Res., 95, 367-371, https://doi.org/10.2112/SI95-071.1.

Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nature Comm., 10, 264, https://doi.org/10.1038/s41467-018-08240-4.

Brown, J., M. T. Jorgenson, O. P. Smith, and W. Lee, 2003: Long-term rates of coastal erosion and carbon input, Elson Lagoon, Barrow, Alaska. In Eighth International Conference on Permafrost, Vol 21, 101-107.

Brown, J., and S. Solomon, 2000: Arctic Coastal Dynamics-Report of an International Workshop, Woods Hole, MA, November 2-4, 1999. Geological Survey of Canada Open File 3929.

Casas-Prat, M., and X. L. Wang, 2020: Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res.-Oceans, 125, e2019JC015745, https://doi.org/10.1029/2019JC015745.

Cunliffe, A. M., G. Tanski, B. Radosavljevic, W. F. Palmer, T. Sachs, H. Lantuit, J. T. Kerby, and I. H. Myers-Smith, 2019: Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. Cryosphere, 13, 1513-1528, https://doi.org/10.5194/tc-13-1513-2019.

Farquharson, L. M., D. H. Mann, D. K. Swanson, B. M. Jones, R. M. Buzard, and J. W. Jordan, 2018: Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Mar. Geol., 404, 71-83, https://doi.org/10.1016/j.margeo.2018.07.007.

Forbes, D. L., 2011: State of the Arctic coast 2010: scientific review and outlook. Land-Ocean Interactions in the Coastal Zone, Institute of Coastal Research, 178 pp.

Fritz, M., J. E. Vonk, and H. Lantuit, 2017: Collapsing Arctic coastlines. Nat. Climate Change, 7, 6-7, https://doi.org/10.1038/nclimate3188.

Gibbs, A. E., B. M. Jones, and B. M. Richmond, 2020: A GIS compilation of vector shorelines and coastal bluff edge positions, and associated rate of change data for Barter Island, Alaska: U.S. Geological Survey data release, https://doi.org/10.5066/P9CRBC5I.

Grigoriev, M. N., 2019: Coastal retreat rates at the Laptev Sea key monitoring sites. PANGAEA, https://doi.org/10.1594/PANGAEA.905519.

Irrgang, A. M., H. Lantuit, G. K. Manson, F. Günther, G. Grosse, and P. P. Overduin, 2018: Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res.-Earth, 123, 779-800, https://doi.org/10.1002/2017JF004326.

Jones, B. M., and Coauthors, 2018: A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett., 13, 115001, https://doi.org/10.1088/1748-9326/aae471.

Lantuit, H., and Coauthors, 2012: The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar. Coasts, 35, 383-400, https://doi.org/10.1007/s12237-010-9362-6.

Lim, M., D. Whalen, J. Martin, P. Mann, S. Hayes, P. Fraser, H. Berry, and D. Ouellette, 2020: Massive ice control on permafrost coast erosion and sensitivity. Geophys. Res. Lett., 47, e2020GL087917, https://doi.org/10.1029/2020GL087917.

Nielsen, D. M., M. Dobrynin, J. Baehr, S. Razumov, and M. Grigoriev, 2020: Coastal erosion variability at the southern Laptev Sea linked to winter sea ice and the Arctic Oscillation. Geophys. Res. Lett., 47, e2019GL086876, https://doi.org/10.1029/2019GL086876.

Novikova, A., N. Belova, A. Baranskaya, D. Aleksyutina, A. Maslakov, E. Zelenin, N. Shabanova, and S. Ogorodov, 2018: Dynamics of permafrost coasts of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data. Remote Sens., 10, 1481, https://doi.org/10.3390/rs10091481.

Rachold, V., F. E. Aré, D. E. Atkinson, G. Cherkashov, and S. M. Solomon, 2005: Arctic coastal dynamics (ACD): An introduction. Geo-Mar. Lett., 25, 63-68.

Radosavljevic, B., H. Lantuit, W. Pollard, P. Overduin, N. Couture, T. Sachs, V. Helm, and M. Fritz, 2016: Erosion and flooding—Threats to coastal infrastructure in the Arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuar. Coasts, 39, 900-915, https://doi.org/10.1007/s12237-015-0046-0.

Shabanova, N., S. Ogorodov, P. Shabanov, and A. Baranskaya, 2018: Hydrometeorological forcing of western Russian Arctic coastal dynamics: XX-century history and current state. Geogr. Environ. Sustain., 11, 113-129.

Sinitsyn, A. O., E. Guegan, N. Shabanova, O. Kokin, and S. Ogorodov, 2020: Fifty four years of coastal erosion and hydrometeorological parameters in the Varandey region, Barents Sea. Coastal Eng.,157, 103610, https://doi.org/10.1016/j.coastaleng.2019.103610.

Tanski, G., D. Wagner, C. Knoblauch, M. Fritz, T. Sachs, and H. Lantuit, 2019: Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett., 46, 11244-11252, https://doi.org/10.1029/2019GL084303.

Zagórski, P., K. Jarosz, and J. Superson, 2020: Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Mar. Geod., 43, 433-471, https://doi.org/10.1080/01490419.2020.1715516.

Wildland Fire in High Northern Latitudes

Alaska Interagency Coordination Center (AICC), 2020: Alaska fire history data. https://fire.ak.blm.gov/predsvcs/intel.php, accessed 10 September 2020.

Barrett, K., T. Loboda, A. D. McGuire, H. Genet, E. Hoy, and E. Kasischke, 2016: Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest. Ecosphere, 7(11), e01572, https://doi.org/10.1002/ecs2.1572.

Bieniek, P. A., U. S. Bhatt, A. York, J. E. Walsh, R. Lader, H. Strader, R. H. Ziel, R. R. Jandt, and R. L. Thoman, 2020: Lightning variability in dynamically downscaled simulations of Alaska's present and future summer climate. J. Appl. Meteor. Climatol., 59, 1139-1152, https://doi.org/10.1175/JAMC-D-19-0209.1.

Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower, 2007: Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450(7166), 89-92. https://doi.org/10.1038/nature06272.

Canadian National Forestry Database, 2020: Area burned by jurisdiction. http://nfdp.ccfm.org/en/data/fires.php, accessed September 10, 2020.

Duncan, B. N., and Coauthors, 2020: Space-based observations for understanding changes in the arctic-boreal zone. Rev. Geophys., 58, e2019RG000652, https://doi.org/10.1029/2019RG000652.

Flannigan, M., B. Stocks, M. Turetsky, and M. Wotton, 2009: Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol., 15, 549-560, https://doi.org/10.1111/j.1365-2486.2008.01660.x.

French, N. H. F., L. K. Jenkins, T. V. Loboda, M. Flannigan, R. Jandt, L. L. Bourgeau-Chavez, and M. Whitley, 2015: Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire, 24(8), 1045-1061, https://doi.org/10.1071/WF14167.

Giglio, L., L. Boschetti, D. P. Roy, M. L. Humber, and C. O. Justice, 2018: The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ., 217, 72-85. https://doi.org/10.1016/j.rse.2018.08.005.

Hanes, C. C., X. Wang, P. Jain, M. A. Parisien, J. M. Little, and M. D. Flannigan, 2019: Fire-regime changes in Canada over the last half century. Can. J. For. Res., 49(3), 256-269, https://doi.org/10.1139/cjfr-2018-0293.

Hayasaka, H., H. L. Tanaka, and P. A, Bieniek, 2016: Synoptic-scale fire weather conditions in Alaska. Polar Sci., 10(3), 217-226, https://doi.org/10.1016/j.polar.2016.05.001.

Jones, B., G. Grosse, C. D. Arp, E. A. Miller, L. Liu, D. J. Hayes, and C. F. Larsen, 2015: Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep., 5, 15865, https://doi.org/10.1038/srep15865.

Kukavskaya, E. A., A. J. Soja, A. P. Petkov, E. I. Ponomarev, G. A. Ivanova, and S. G Conard, 2013: Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption. Can. J. For. Res., 43, 493-506, https://doi.org/10.1139/cjfr-2012-0367.

Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin, 2005: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res., 110(D13), D13101, https://doi.org/10.1029/2004JD005158.

Lorenz, K., and R. Lal, 2010: Carbon Sequestration in Forest Ecosystems, pp. 159-205, Springer Netherlands, https://doi.org/10.1007/978-90-481-3266-9.

McElhinny, M., J. F. Beckers, C. Hanes, M. Flannigan, and P. Jain, 2020: A high-resolution reanalysis of global fire weather from 1979 to 2018 - overwintering the Drought Code. Earth Syst. Sci. Data, 12, 1823-1833, https://doi.org/10.5194/essd-12-1823-2020.

Mekonnen, Z. A., W. J. Riley, J. T. Randerson, R. F. Grant, and B. M. Rogers, 2019: Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants, 5, 952-958, https://doi.org/10.1038/s41477-019-0495-8.

Partain, J. L., and Coauthors, 2016: An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015 [in "Explaining Extremes of 2015 from a Climate Perspective"]. Bull. Amer. Met. Soc., 97(12), S14-S18, https://doi.org/10.1175/BAMS-D-16-0149.1.

Potter, S., and Coauthors, 2019: Climate change decreases the cooling effect from postfire albedo in boreal North America. Glob. Change Biol., 26, 1592-1607, https://doi.org/10.1111/gcb.14888.

Romanovsky, V., and Coauthors, 2017: Changing permafrost and its impacts. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. pp. 65-102. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.

Rogers, B. M., A. J. Soja, M. L. Goulden, and J. T. Randerson, 2015: Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci., 8(3), 228-234, https://doi.org/10.1038/ngeo2352.

San-Miguel-Ayanz, J., and Coauthors, 2019: Forest Fires in Europe, Middle East and North Africa 2018. EUR 29856 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/1128.

Soja, A. J., and Coauthors, 2007: Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Change, 56, 274-296, https://doi.org/10.1016/j.gloplacha.2006.07.028.

Thomas, J. L., and Coauthors, 2017: Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett., 44, 7965-7974, https://doi.org/10.1002/2017GL073701.

Veraverbeke, S., B. M. Rogers, M. L. Goulden, R. R. Jandt, C. E. Miller, E. B. Wiggins, and J. T. Randerson, 2017: Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Climate Change, 7, 529-534, https://doi.org/10.1038/nclimate3329.

Walker, X. J., and Coauthors, 2019: Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572, 520-523, https://doi.org/10.1038/s41586-019-1474-y.

Wheeling, K., 2020: The rise of zombie fires. Eos, 101, https://doi.org/10.1029/2020EO146119.

Wohlberg, M., 2015: 'Well on our way to another record drought code year': NWT fire manager. Northern Journal, June 23, 2015, https://norj.ca/2015/06/well-on-our-way-to-another-record-drought-code-year-nwt-fire-manager/.

Wotton, B. M., 2009: Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat., 16, 107-131, https://doi.org/10.1007/s10651-007-0084-2.

Young, A. M., P. E. Higuera, P. A. Duffy, and F. S. Hu, 2017: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography, 40, 606-617, http://dx.doi.org/10.1111/ecog.02205.

Yue, X., L. J. Mickley, J. A. Logan, R. C. Hudman, M. V. Martin, and R. M. Yantosca, 2015: Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmos. Chem. Phys., 15, 10033-10055, https://doi.org/10.5194/acp-15-10033-2015.

Ziel, R. H., P. A. Bieniek, U. S. Bhatt, H. Strader, T. S. Rupp, and A. York, 2020: A comparison of fire weather indices with MODIS fire days for the natural regions of Alaska. Forests, 11, 516, https://doi.org/10.3390/f11050516.

The MOSAiC Expedition: A Year Drifting with the Arctic Sea Ice

Alvarez, J., D. Yumashev, and G. Whiteman, 2020: A framework for assessing the economic impacts of Arctic change. Ambio, 49, 407-418, https://doi.org/10.1007/s13280-019-01211-z.

Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 20-29, https://doi.org/10.1038/s41558-019-0662-y.

Cooley, S. W., J. C. Ryan, L. C. Smith, C. Horvat, B. Pearson, B. Dale, and A. H. Lynch, 2020: Coldest Canadian Arctic communities face greatest reductions in shorefast sea ice. Nat. Climate Change, 10, 533-538, https://doi.org/10.1038/s41558-020-0757-5.

Frolov, I. E., Z. M. Gudkovich, V. F. Radionov, A. V. Shirochkov, and L. A. Timokhov, 2005: The Arctic Basin: results from the Russian drifting stations. Praxis Publishing. Chischester, 270 pp.

Jung, T., and Coauthors, 2016: Advancing Polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteor. Soc., 97, 1631-1647, https://doi.org/10.1175/BAMS-D-14-00246.1.

Krumpen, T., and Coauthors, 2020: The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf. Cryosphere, 14, 2173-2187, https://doi.org/10.5194/tc-14-2173-2020.

Nansen, F., 1897: Farthest north: Being the record of a voyage of exploration of the ship "Fram" 1893-96 and of a fifteen months' sleigh journey by Dr. Nansen and Lieut. Johansen. Harper and Brothers, https://doi.org/10.1037/12900-000.

Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604-610, https://doi.org/10.1038/nclimate3353.

Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255-276, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

Wohltmann, I., and Coauthors, 2020: Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020. Geophys. Res. Lett., 47, e2020GL089547, https://doi.org/10.1029/2020GL089547.

Integrating Models and Observations to Better Predict a Changing Arctic Sea Ice Cover

Bench, K., 2016: Quantifying seasonal skill in coupled sea ice models using freeboard measurements from spaceborne laser altimeters. Naval Postgraduate School, Monterey, CA. Retrieved from http://hdl.handle.net/10945/49374.

Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27(21), 8244-8258.

Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 3419-3438, https://doi.org/10.5194/tc-12-3419-2018.

Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023-1043, https://doi.org/10.1175/2011BAMS2856.1.

Burgard, C., D. Notz, L. T. Pedersen, and R.T. Tonboe, 2020a: The Arctic Ocean observation operator for 6.9 GHz (ARC3O)-Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output. Cryosphere, 14(7), 2369-2386, https://doi.org/10.5194/tc-14-2369-2020.

Burgard, C., D. Notz, L. T. Pedersen, R. T. Tonboe, 2020b: The Arctic Ocean observation operator for 6.9 GHz (ARC3O)-Part 2: Development and evaluation. Cryosphere, 14, 2387-2407, https://doi.org/10.5194/tc-14-2387-2020.

Bushuk, M., M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth, and T. Delworth, 2020: A mechanism for the Arctic sea ice spring predictability barrier. Geophys. Res. Lett., 47, e2020GL088335, https://doi.org/10.1029/2020GL088335.

Bushuk, M., X. Yang, M. Winton, R. Msadek, M. Harrison, A. Rosati, and R. Gudgel, 2019: The value of sustained ocean observations for sea ice predictions in the Barents Sea. J. Climate, 32(20), 7017-7035, https://doi.org/10.1175/JCLI-D-19-0179.1.

Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 7566-7575, https://doi.org/10.1002/2014GL061694.

Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2.

Holland, M. M., and D. Perovich, 2017: Sea ice summer camp: Bringing together sea ice modelers and observers to advance polar science. Bull. Amer. Meteor. Soc., 98(10), 2057-2059, https://doi.org/10.1175/BAMS-D-16-0229.1.

Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, 9113-9120, https://doi.org/10.1002/2016GL070067.

Kaminski, T., and Coauthors, 2018: Arctic mission benefit analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance. Cryosphere, 12, 2569-2594, https://doi.org/10.5194/tc-12-2569-2018.

Markus, T., and Coauthors, 2017: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens. Environ., 190, 260-273, https://doi.org/10.1016/j.rse.2016.12.029.

Massonnet, F., T. Fichefet, and H. Goosse, 2015: Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Model., 88, 16-25, https://doi.org/10.1016/j.ocemod.2014.12.013.

Roberts, A. F., E. C. Hunke, S. Kamal, W. F. Lipscomb, C. Horvat, and W. Maslowski, 2019: A variational method for sea ice ridging in Earth System Models. J. Adv. Model. Earth Sys., 11, 771-805, https://doi.org/10.1029/2018MS001395.

Smith, A., A. Jahn, and M. Wang, 2020: Seasonal transition dates can reveal biases in Arctic sea ice simulations. Cryosphere, 14, 2977-2997, https://doi.org/10.5194/tc-14-2977-2020.

Steele, M., A. Bliss, G. Peng, W. N. Meier, and S. Dickinson, 2019: Arctic sea ice seasonal change and melt/freeze climate indicators from satellite data, Version 1, Data subset: 1979-03-01 to 2017-02-28. Data accessed 2019-08-26, 2019.

Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 86-89, https://doi.org/10.1038/nclimate2483.

Yang, W., and G. Magnusdottir, 2018: Year-to-year variability in Arctic minimum sea ice extent and its preconditions in observations and the CESM Large Ensemble simulations. Sci. Rep., 8(1), 9070, https://doi.org/10.1038/s41598-018-27149-y.

Yu, W., M. Doutriaux, G. Sèze, H. Le Treut, and M. Desbois, 1996: A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Climate Dyn., 12, 389-401, https://doi.org/10.1007/BF00211685.

New Arctic Research Facility Opens Door to Science Collaborations

Miller, J. M., Ed., 1974: Geophysical Monitoring for Climatic Change No. 1 Summary Report - 1972. U. S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, https://www.esrl.noaa.gov/gmd/publications/summary_reports/summary_report_1.pdf.

National Science Foundation (NSF) Office of Polar Programs, 2002: The Feasibility of a Barrow Arctic Research Center. https://www.esrl.noaa.gov/gmd/publications/historical/NSF Report_BARC Feasibility_Apr2002.pdf.

Uttal, T., and Coauthors, 2016: International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bull. Amer. Meteor. Soc., 97, 1033-1056, https://doi.org/10.1175/BAMS-D-14-00145.1.

Print

x

Focus Areas

Arctic Report Card

Tracking recent environmental changes relative to historical records

More

Oceans

Conserving and managing our Arctic Ocean resources

Weather

Providing weather information to protect lives, property, and management

More

Satellites

Observing the Arctic ocean and atmosphere to understand and forecast Arctic change

More

Research

Providing environmental intelligence to understanding the complex Arctic system

More

Fisheries

Conserving and managing Arctic living marine resources and their habitats

More

ARCTIC HEADQUARTERS

stay connected

About Our Organization

Issued annually since 2006, the Arctic Report Card is a timely and peer-reviewed source for clear, reliable and concise environmental information on the current state of different components of the Arctic environmental system relative to historical records. The Report Card is intended for a wide audience, including scientists, teachers, students, decision-makers and the general public interested in the Arctic environment and science.

Copyright 2021 by Arctic Program Terms Of Use Privacy Statement
Back To Top