Search
Search ×

Arctic Report Card: Update for 2018

Effects of persistent Arctic warming continue to mount

Archive of previous Arctic Report Cards >

2018 Arctic Report Card Home >

About

Vital Signs

Other Indicators

Frostbites

More Information

Arctic Essays

References

Surface Air Temperature

Acosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, H. -C. Hansson, and A. M. L. Ekman, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci., 9, 277-281.

Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic. J. Clim., 29, 5061-5081.

Kim, B. -M., S. -W. Son, S. -K. Min, J. -H. Jeong, S. -J. Kim, X. Zhang, T Shim, and J. -H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi: 10.1038/ncomms5646.

Kim, B. -M., J. -Y. Hong, S. -Y. Jun, X. Zhang, H. Kwon, S. -J. Kim, J. -H. Kim, S. -W. Kim, and H. -K. Kim, 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of Atlantic windstorm. Sci. Rep., 7, 40051, doi: 10.1038/srep40051.

Mahlstein, I., and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2° C global warming above present. J. Geophys. Res. Atmos., 117, D06104, doi: 10.1029/2011JD016709.

Nordli, Ø., R. Przybylak, A. E. J. Ogilvie, and K. Isaksen, 2014: Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898-2012. Polar Res., 33(1), 21349, doi: 10.3402/polar.v33.21349.

Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747-750, doi: 10.1126/science.aag2345.

Overland, J. E., 2009: The case for global warming in the Arctic, in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions. J. C. J. Nihoul and A. G. Kostianoy, Eds., Springer, pp. 13-23.

Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181-184, doi: 10.1038/ngeo2071.

Terrestrial Snow Cover

Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol., 38, 726-740.

Brown, R., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean., 41, 1-14.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeorol., 14, 203-219, doi: 10.1175/JHM-D-12-012.1.

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137-142.

Helfrich, S., D. McNamara, B. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586.

Reichle, R., C. Draper, Q. Liu, M. Girotto, S. Mahanama, R. Koster, and G. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Clim., 30, 2937-2960, doi: 10.1175/JCLI-D-16-0720.1.

Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. -P. Kärnä, and J. Koskinen, 2011: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 3517-3529.

Greenland Ice Sheet

Box, J. E., and K. Hansen, 2015: Survey of Greenland glacier area changes. PROMICE Newsletter, 8, December 2015, http://promice.org/Newsletter.html.

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geol. Surv. Den. Greenl. Bull., 38, 53-56.

Cappelen, J. (Ed.), 2019: Greenland - DMI Historical Climate Data Collection 1784-2018. DMI Report 19. (in preparation)

Mote, T., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507.

Nghiem, S. V., D. K. Hall, T. L. Mote, M. Tedesco, M. R. Albert, K. Keegan, C. A. Shuman, N. E. DiGirolamo, and G. Neumann, 2012: The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39, L20502, doi: 10.1029/2012GL053611.

Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615-630.

Tedesco, M., J. E. Box, J. Cappelen, R. S. Fausto; X. Fettweis, K. Hansen, T. Mote, I. Sasgen, C. J. P. P. Smeets, D. van As, R. S. W. van de Wal, and I. Velicogna, 2017: Greenland Ice Sheet [in Arctic Report Card 2017], https://www.arctic.noaa.gov/Report-Card.

van As, D., R. S. Fausto, J. Cappelen, R. S. W. Van de Wal, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. Geol. Surv. Den. Greenl. Bull., 35, 71-74.

van de Wal, R. S. W., W. Boot, C. J. P. P. Smeets, H. Snellen, M. R. van den Broeke, and J. Oerlemans, 2012: Twenty-one years of mass balance observations along the K-transect, West-Greenland. Earth Syst. Sci. Data, 4, 31-35, doi: 10.5194/essd-4-31-2012.

Sea Ice

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally. 1996, updated yearly: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, CO USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: 10.5067/8GQ8LZQVL0VL.

Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002, updated 2012: Sea Ice Index, National Snow and Ice Data Center. Digital media, Boulder, CO.

Laxon, S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R. Cullen, R. Kwok, A. Schweiger, J. Zhang, C. Haas, S. Hendricks, R. Krishfield, N. Kurtz, S. Farrell, and M. Davidson, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732-737, doi: 10.1002/grl.50193.

Maslanik, J., and J. Stroeve, 1999, updated daily: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: 10.5067/U8C09DWVX9LM.

Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, doi: 10.1029/2011GL047735.

Meier, W. N., J. Stroeve, A. Barrett, and F. Fetterer, 2012: A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present. Cryosphere, 6, 1359-1368, doi: 10.5194/tc-6-1359-2012.

Tschudi, M. A., J. C. Stroeve, and J. S. Stewart, 2016: Relating the age of Arctic sea ice to its thickness, as measured during NASA's ICESat and IceBridge Campaigns. Remote Sens., 8(6), 457, doi: 10.3390/rs8060457.

Tschudi, M. A., C. Fowler, J. A. Maslanik, and J. A. Stroeve, 2010: Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 536-540, doi: 10.1109/JSTARS.2010.2048305.

Tschudi, M., C. Fowler, and J. Maslanik, 2015: EASE-Grid Sea Ice Age, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, doi: 10.5067/1UQJWCYPVX61.

Warren, S., I. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Clim., 12, 1814-1829.

Sea Surface Temperature

Barton, B. I., Y. Lenn, and C. Lique, 2018: Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr., 48, 1849-1866, doi: 10.1175/JPO-D-18-0003.1.

Fetterer, F., K. Knowles, W. Meier, M. Savoie, and A. K. Windnagel. 2017, updated daily. Sea Ice Index, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: 10.7265/N5K072F8.

Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change, 8(7), 634-639, doi: 10.1038/s41558-018-0205-y.

Long, Z., and W. Perrie, 2017: Changes in ocean temperature in the Barents Sea in the twenty-first century. J. Clim., 30, 5901-5921, doi: 10.1175/JCLI-D-16-0415.1.

Parkinson, C. L., 2014: Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett., 41, 4316-4322, doi: 10.1002/2014GL060434.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Clim., 15, 1609-1625.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Clim., 20, 5473-5496. (Data available at https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.)

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res. Oceans, 120, 7223-7236, doi: 10.1002/2015JC011005.

Timmermans, M. -L., J. Toole, R. Krishfield, 2018: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv., 4(8) eaat6773, doi: 10.1126/sciadv.aat6773.

Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline

Ardyna, M., M. Babin, E. Devred, A. Forest, M. Gosselin, P. Raimbault, and J.-É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132, doi: 10.1002/lno.10554.

Babin, M., S. Bélanger, I. Ellinsten, A. Forest, V. Le Fouest, T. Lacour, M. Ardyna, and D. Slagstad, 2015: Estimation of primary production in the Arctic Ocean using ocean colour remote sensing and coupled physical-biological models: Strengths, limitations and how they compare. Prog. Oceanogr., 139, 197-220, doi: 10.1016/j.pocean.2015.08.008.

Barber, D. G., H. Hop, C. J. Mundy, B. Else, I. A. Dmitrenko, J. -É. Tremblay, J. K. Ehn, P. Assmy, M. Daase, L. M. Candlish, and S. Rysgaard, 2015: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr., 139, 122-150, doi: 10.1016/j.pocean.2015.09.003.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20.

Bélanger, S., M. Babin, and J. É. Tremblay, 2013: Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences, 10, 4087-4101, doi: 10.5194/bg-10-4087-2013.

Chaves, J., P. J. Werdell, C. W. Proctor, A. R. Neeley, S. A. Freeman, C. S. Thomas, and S. B. Hooker, 2015: Assessment of ocean color data records from MODIS-Aqua in the western Arctic Ocean. Deep-Sea Res. Pt. II, 118A, 32-43, doi: 10.1016/j.dsr2.2015.02.011.

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea levels: Effects on physicochemical parameters, in Climate and Fresh Water Toxins. L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany.

Comiso, J. C., R. Gersten, L. Stock, J. Turner, G. Perez, and K. Cho, 2017a: Positive trends in the Antarctic sea ice cover and associated changes in surface temperature. J. Clim., 30, 2251-2267, doi: 10.1175/JCLI-D-16-0408.1.

Comiso, J. C., W. N. Meier, and R. Gersten, 2017b: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Oceans, 122, 6883-6900, doi: 10.1002/2017JC012768.

Demidov, A. B., S. A. Mosharov, and P. N. Makkaveev, 2014: Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer. J. Marine Syst., 132, 130-149, doi: 10.1016/j.jmarsys.2014.01.014.

Frey, K. E., J. A. Maslanik, J. Clement Kinney, and W. Maslowski, 2014: Recent variability in sea ice cover, age, and thickness in the Pacific Arctic Region, in The Pacific Arctic Region: Ecosystem status and trends in a rapidly changing environment. J. M. Grebmeier, and W. Maslowski, Eds., Springer: Dordrecht, pp. 31-64.

Frey, K. E., G. W. K. Moore, L. W. Cooper, and J. M. Grebmeier, 2015: Divergent patterns of recent sea ice cover across the Bering, Chukchi and Beaufort seas of the Pacific Arctic Region. Prog. Oceanogr., 136, 32-49, doi: 10.1016/j.pocean.2015.05.009.

Giesbrecht, K. E., D. E. Varela, D. E., J. Wiktor, J. M. Grebmeier, B. Kelly, and J.E. Long, 2018 (in press): A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep Sea Res. Pt. II–Top. Stud. Oceanogr., doi: 10.1016/j.dsr2.2018.06.010.

Hill, V., M. Ardyna, S. H. Lee, and D. E. Varela, 2018: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Res. Pt. II, 152, 82-94, doi: 10.1016/j.dsr2.2016.12.015.

Kahru, M., 2017: Ocean productivity from space: Commentary. Global Biogeochem. Cycles, 31, 214-216, doi: 10.1002/2016GB005582.

Lee, Y. J., et al., 2015: An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models. J. Geophys. Res. Oceans, 120, 6508-6541, doi: 10.1002/2015JC011018.

Leu, E., C. J. Mundy, P. Assmy, K. Campbell, T. M. Gabrielsen, M. Gosselin, T. Juul-Pedersen, and R. Gradinger, 2015: Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms. Prog.Oceanogr., 139, 151-170, doi: 10.1016/j.pocean.2015.07.012..

Moore, S. E., and J. M. Grebmeier, 2018: The Distributed Biological Observatory: Linking physics to biology in the Pacific Arctic region. Arctic, 71 (Suppl. 1), 1-7; doi: 10.14430/arctic4606.

Müller-Karger, F. E., R. Varela, R. Thunell, R. Luerssen, C. Hu, and J. J. Walsh, 2005: The importance of continental margins in the global carbon cycle. I, 32, L01602, doi: 10.1029/2004GL021346.

Neeley, A. R., L. A. Harris, and K. E. Frey, 2018: Unraveling phytoplankton community dynamics in the northern Chukchi and western Beaufort seas amid climate change. Geophys. Res. Lett., 45, 7663-7671, doi: 10.1029/2018GL077684.

Tremblay J. -É., L. G. Anderson, P. Matrai, S. Bélanger, C. Michel, P. Coupel, and M. Reigstad, 2015: Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr., 139, 171-196, doi: 10.1016/j.pocean.2015.08.009.

Tundra Greenness

Ackerman, D. E., D. Griffin, S. E. Hobbie, K. Popham, E. Jones, and J. C. Finlay, 2018: Uniform shrub growth response to June temperature on the North Slope of Alaska. Environ. Res. Lett., 13, 044013.

Becher, M., J. Olofsson, L. Berglund, and J. Klaminder, 2018: Decreased cryogenic disturbance: one of the mechanisms behind the vegetation change in the Arctic. Polar Biol., 41, 101-110.

Bhatt, U. S., D. A. Walker, M. K. Raynolds, P. A. Bieniek, H. E. Epstein, J. C. Comiso, J. E. Pinzon, C. J. Tucker, and I. V. Polyakov, 2013: Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens., 4, 4229-4254.

Bjorkman, A. D., et al., 2018: Plant functional trait change across a warming tundra biome. Nature, 562, 57-62, doi: 10.1038/s41586-018-0563-7.

Christiansen, C. T., M. J. Lafreniere, G. H. R. Henry, and P. Grogan, 2018: Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Global Change Biol., 24, 3508-3525.

Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina, 2018: Seasonal and long-term changes in active-layer temperatures after tall shrubland expansion and succession in arctic tundra. Ecosystems, 21, 507-520.

Global Inventory Modeling and Mapping Studies (GIMMS), 2013: Available online: http://gcmd.nasa.gov/records/GCMD_GLCF_GIMMS.html

Karlsen, S. R., H. B. Anderson, R. van der Wal, and B. B. Hansen, 2018: A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett., 13:025011.

Keenan, T. F., and W. J. Riley, 2018: Greening of the land surface in the world's cold regions consistent with recent warming. Nature Clim. Change, 8, 825-828, doi: 10.1038/s41558-018-0258-y.

Lafleur, P. M., and E. R. Humphreys, 2018: Tundra shrub effects on growing season energy and carbon dioxide exchange. Environ. Res. Lett., 13, 055001.

Lara, M. J., I. Nitze, G. Grosse, P. Martin, and A. D. McGuire, 2018: Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep., 8, 2345.

Maliniemi, T., J. Kapfer, P. Saccone, A. Skog, and R. Virtanen, 2018: Long-term vegetation changes of treeless heath communities in northern Fennoscandia: Links to climate change trends and reindeer grazing. J. Veg. Sci., 29, 469-479.

Myers-Smith, I. H., and D. S. Hik, 2018: Climate warming as a driver of tundra shrubline advance. J. Ecol., 106, 47-560.

Olofsson J., L. Oksanen, T. Callaghan, P. E. Hulme, T, Oksanen, and O. Suominen, 2009: Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biol., 15, 2681-2693.

Opala-Owczarek, M., E. Piroznikow, P. Owczarek, W. Szymanski, B. Luks, D. Kepski, M. Szymanowski, B. Wojtun, and K. Migala, 2018: The influence of abiotic factors on the growth of two vascular plant species (Saxifraga oppositifolia and Salix polaris) in the High Arctic. Catena, 163, 219-232.

Parmentier, F. -J., D. Rasse, M. Lund, J. W. Bjerke, B. G. Drake, S. Weldon, H. Tømmervik, and G. H. Hansen, 2018: Vulnerability and resilience of the carbon exchange of a subarctic peatland to an extreme winter event. Environ. Res. Lett., 13, 065009.

Phoenix, G. K., and J. W. Bjerke, 2016: Arctic browning: Extreme events and trends reversing arctic greening. Global Change Biol., 22, 2960-2962.

Pinzon, J., and C. Tucker, 2014: A non-stationary 1981-2014 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960, doi: 10.3390/rs6086929.

Raynolds M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403-411.

Reichle, L. M., H. E. Epstein, U. S. Bhatt, M. K. Raynolds, and D. A. Walker, 2018: Spatial heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophys. Res. Lett., 45, 9206-9215, doi: 10.1029/2018GL078820.

Treharne, R., J. W. Bjerke, L. D. Emberson, H. Tømmervik, and G. K. Phoenix, 2016: Arctic browning: Vegetation damage and implications for carbon balance. Geophys. Res. Abstracts, 18, EGU2016-8838.

Wang, X., T. Wang, H. Guo, D. Liu, Y. T. Zhao, T. T. Zhang, Q. Liu, and S. L. Piao, 2018: Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biol., 24, 1651-1662.

Weijers, S., I. H. Myers-Smith, and J. Loeffler, 2018: A warmer and greener cold world: summer warming increases shrub growth in the alpine and high arctic tundra. Erdkunde, 72, 63-85.

Wheeler, H. C., T. T. Hoye, and J. -C. Svenning, 2018: Wildlife species benefitting from a greener Arctic are most sensitive to shrub cover at leading range edges. Global Change Biol., 24, 212-223.

Xu, X., W. J. Riley, C. D. Koven, and G. S. Jia, 2018: Observed and simulated sensitivities of spring greenup to preseason climate in northern temperate and boreal regions. J. Geophys. Res.–Biogeosci., 123, 60-78.

River Discharge

Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94(C10), 14,485-14,498.

Déry, S. J., T. A. Stadnyk, M. K. MacDonald, and B. Gauli-Sharma, 2016: Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci., 20, 4801-4818, doi: 10.5194/hess-20-4801-2016.

Holmes, R. M., M. T. Coe, G. J. Fiske, T. Gurtovaya, J. W. McClelland, A. I. Shiklomanov, R. G. M. Spencer, S. E. Tank, and A. V. Zhulidov, 2013: Climate change impacts on the hydrology and biogeochemistry of Arctic Rivers, in Global Impacts of Climate Change on Inland Waters. C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., Wiley, pp. 3-26.

Holmes, R. M., A. I Shiklomanov, S. E. Tank, J. W. McCelland, and M. Tretiakov, 2015: River Discharge [in Arctic Report Card 2015], https://www.arctic.noaa.gov/Report-Card.

McClelland, J. W., S. J. Déry, B. J. Peterson, R. M. Holmes, and E. F. Wood, 2006: A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33, L06715, doi: 06710.01029/02006GL025753.

McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. Macdonald, 2012: The Arctic Ocean estuary. Estuar. Coast., 35, 353-368, doi: 10.1007/s12237-010-9357-3.

Overeem, I., and J. P. M. Syvitski, 2010: Shifting discharge peaks in Arctic rivers, 1977-2007. Geogr. Ann. A, 92, 285-296.

Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 2171-2173.

Rawlins, M. A., et al., 2010: Analysis of the arctic system freshwater cycle intensification: Observations and expectations. J. Climate, 23, 5715-5737, doi: 10.1175/2010JCLI3421.1.

Rood, S. B., S. Kaluthota, L. J. Philipsen, N. J. Rood, and K. P. Zanewich, 2017: Increasing discharge from the Mackenzie River system to the Arctic Ocean. Hydrol. Process., 31, 150-160, doi: 10.1002/hyp.10986.

Shiklomanov A. I., and R. B. Lammers, 2009: Record Russian river discharge in 2007 and the limits of analysis. Environ. Res. Lett., 4, 045015, doi: 10.1088/1748-9326/4/4/045015.

Lake Ice

Baijnath-Rodino, J. A., C. R. Duguay, and E. F. LeDrew, 2018: Climatological trends of snowfall over the Laurentian Great Lakes Basin. Int. J. Climatol., 38, 3942-3962.

Brown, L. C., and C. R. Duguay, 2010: The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr., 34,671-704.

Du, J., J. S. Kimball, C. R. Duguay, Y. Kim, and J. Watts, 2017: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11, 47-63.

Duguay, C., L. Brown, K. -K. Kang, and H. Kheyrollah Pour, 2015a: [The Arctic] Lake ice [in "State of the Climate in 2014"]. Bull. Am. Meteorol. Soc., 96, S144-S145.

Duguay C. R., L. C. Brown, K. K. Kang, H. Kheyrollah Pour, 2013: Lake ice [in Arctic Report Card 2013], https://www.arctic.noaa.gov/Report-Card.

Duguay, C. R., M. Bernier, Y. Gauthier, and A. Kouraev, 2015b: Lake and river ice, in Remote Sensing of the Cryosphere. M. Tedesco, Ed., Wiley-Blackwell (Oxford, UK), pp. 273-306.

Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix, and P. Ménard, 2006: Recent trends in Canadian lake ice cover. Hydrol. Process., 20, 781-801.

Eerola, K., L. Rontu, E. Kourzeneva, H. Kheyrollah Pour, and C. R. Duguay, 2014: Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation—a case study using HIRLAM model. Tellus A, 66, 23929.

GCOS, 2016: The Global Observing System for climate: Implementation needs, GCOS-200. GCOS 2016 Implementation Plan. World Meteorological Organization, 315 pp.

Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586.

IGOS, 2007: Integrated Global Observing Strategy Cryosphere Theme Report—For the Monitoring of our Environment from Space and from Earth. World Meteorological Organization, WMO/TD-No. 1405, 100 pp.

Jeffries, M. O., K. Morris, and C. R. Duguay, 2012: Floating ice: lake ice and river ice, In Satellite Image Atlas of Glaciers of the World—State of the Earth's Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments. R. S. Williams, Jr., and J. G. Ferrigno, Eds., U.S. Geological Survey Professional Paper 1386-A, A381-A424.

Kheyrollah Pour, H., C. R. Duguay, A. Martynov, and L. C. Brown, 2012: Simulation of surface temperature and ice cover of large northern lakes with 1-D models: A comparison with MODIS satellite data and in situ measurements. Tellus A, 64, 17614, doi: 10.3402/tellusa.v64i0.17614.

Šmejkalová, T., M. E. Edwards, and J. Dash, 2016: Arctic lakes show strong decadal trend in earlier spring ice-out. Sci. Rep., 6, 38449.

Surdu, C. M., C. R. Duguay, and D. Fernández Prieto, 2016: Evidence of recent changes in the ice regime of high arctic lakes from spaceborne satellite observations. Cryosphere, 10, 941-960.

Migratory Tundra Caribou and Wild Reindeer

Adamczewski, J., J. Boulanger, B. Croft, T. Davison, H. Sayine-Crawford, and B. Tracz, 2017: A comparison of calving and post-calving photo-surveys for the Bluenose-East herd of barren-ground caribou in northern Canada in 2010. Can. Wildlife Biol. Manag., 6, 4-30.

Altizer, S., R. S. Ostfeld, P. T. Johnson, S. Kutz, and C. D. Harvell, 2013: Climate change and infectious diseases: From evidence to a predictive framework. Science, 341(6145), 514-519.

Bhatt, U. S., et al., 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett., 12, 055003, doi: 10.1088/1748-9326/aa6b0b.

COSEWIC, 2016: COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population in Canada. Committee on the Status of Endangered Wildlife in Canada (Ottawa), 136 pp.

COSEWIC, 2017: COSEWIC assessment and status report on the Caribou Rangifer tarandus, Eastern Migratory population and Torngat Mountains population, in Canada. Committee on the Status of Endangered Wildlife in Canada (Ottawa), 85 pp.

Cuyler, C., M. Rosing, H. Mølgaard, R. Heinrich, and K. Raundrup, 2011: Status of two West Greenland caribou populations 2010; 1) Kangerlussuaq-Sisimiut, 2) Akia-Maniitsoq, Part I. Pinngortitaleriffik - Greenland Institute of Natural Resources. Technical Report No. 78. 162 pp.

Fauchald, P., T. Park, H. Tommervik, R. Myneni, and V. H. Hausner, 2017: Arctic greening from warming promotes declines in caribou populations. Sci. Adv., 3, e1601365, doi: 10.1126/sciadv.1601365.

Kafle, P., S. J. Peacock, S. Grond, K. Orsel, and S. Kutz, 2018: Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: Implications for transmission. Parasites Vectors, 11, 400, doi: 10.1186/s13071-018-2946-x.

Klimstra, R, 2018: Summary of Teshekpuk Caribou Herd photocensus conducted July 14, 2017. Unpubl. memo, Alaska Department of Fish and Game, Division of Wildlife Conservation Northwest, Fairbanks, Alaska.

Kock, R. A., M. Orynbayev, S. Robinson, S. Zuther, and N. Singh, 2018: Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events. Sci. Adv., 4, eaao2314.

Kutz, S. J., et al., 2013: Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Global Change Biol., 19(11), 3254-3262.

Kutz, S. J., et al., 2015: Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can. Vet. J., 56(6), 560-563.

Russell, D. E., P. H. Whitfield, J. Cai, A. Gunn, R.G. White, and K. Poole, 2013: CARMA's MERRA-based caribou climate database. Rangifer, 33(Special Issue 21), 145-152.

Strand, O., E. B. Nilsen, E. J. Solberg, and J. C. D. Linnell, 2012: Can management regulate the population size of wild reindeer (Rangifer tarandus) through harvest? Can. J. Zool., 90, 163-171.

Tomaselli, M, S. Kutz, C. Gerlach, and S. Checkley, 2018: Local knowledge to enhance wildlife population health surveillance: Conserving muskoxen and caribou in the Canadian Arctic. Biol. Conserv., 217, 337-348, doi: 10.1016/j.biocon.2017.11.010.

Tryland, M., and S. J. Kutz, 2018: Reindeer and Caribou: Health and Disease. CRC Press, 534 pp.

Clarity and Clouds: Progress in Understanding Arctic Influences on Mid-latitude Weather

Cohen, J., K. Pfeiffer, and J. A. Francis, 2018: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun., 9, 869, doi: 10.1038/s41467-018-02992-9.

Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, doi: 10.1038/s41467-018-05256-8.

Cvijanovic, I., B. D. Santer, C. Bonfils, D. D. Lucas, J. C. H. Chiang, and S. Zimmerman, 2017: Future loss of Arctic sea-ice cover could drive a substantial decrease in California's rainfall. Nat. Commun., 8, 1947, doi: 10.1038/s41467-017-01907-4.

Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 2149-2157, doi: 10.1002/2016GL067792.

Francis, J. A. and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.

Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIREs Clim. Change, 8, e474, doi: 10.1002/wcc.474.

Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meterol. Soc., 99, 49-60, doi: 10.1175/BAMS-D-16-0259.1.

Kretschmer, M., D. Coumou, J. F. Donges, and J. Runge, 2016: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation. J. Clim., 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.

Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, and D. Coumou, 2017: Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep., 7, 45242, doi: 10.1038/srep45242.

McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea ice loss. Nat. Geosci., 9, 838-842, doi: 10.1038/NGEO2820.

McCusker, K. E., P. J. Kushner, J. C. Fyfe, M. Sigmond, V. V. Kharin, and C. M. Bitz, 2017: Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophys. Res. Lett., 44, 7955-7964, doi: 10.1002/2017GL074327.

Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354(6313), 747-750, doi: 10.1126/science.aag2345.

Peings, Y., J. Cattiaux, S. J. Vavrus, and G. Magnusdottir, 2018: Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett., 13, 074016, doi: 10.1088/1748-932/aacc79.

Sun, L., M. A. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990-2090 and its contribution to climate change. J. Clim., 31, 7823-7843, doi: 10.1175/JCLI-D-18-0134.1.

Swain, D. L., D. Singh, D. E. Horton, J. S. Mankin, T. C. Ballard, and N. S. Diffenbaugh, 2017: Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. J. Geophys. Res. Atmos., 122, 12,194-12,209, doi: 10.1002/2017JD026575.

Vavrus, S. J., 2018: The influence of Arctic amplification on mid-latitude weather and climate. Curr. Clim. Change Rep., 4, 238-249, doi: 10.1007/s40641-018-0105-2.

Vavrus, S. J., F. Wang, J. Martin, J. Francis, Y. Peings, and J. Cattiaux, 2017: Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. J. Clim., 30, 4317-4333, doi: 10.1175/JCLI-D-16-0762.1.

Yao, Y., D. Luo, A. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Clim., 30, 3549-3568, doi: 10.1175/JCLI-D-16-0261.1.

Ye, K., T. Jung, and T. Semmler, 2018: The influences of the Arctic troposphere on the midlatitude climate variability and the recent Eurasian cooling. J. Geophys. Res. Atmos., 123, 10,162-10,184, doi: 10.1029/2018JD028980.

York, A., U. Bhatt, R. Thoman, and R. Ziel, 2018: Wildland fire in boreal and arctic North America [in "State of the Climate in 2017"]. Bull. Am. Meteorol. Soc., 99(8), S167-S169, doi: 10.1175 /2018BAMSStateoftheClimate.1.

Zhang, P., Y. Wu, I. R. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv., 4, eaat6025, doi:10.1126/sciadv.aat6025.

Harmful Algal Blooms in the Arctic

Alaska Sea Grant, "Bering Strait: Walruses and Saxitoxin-late summer/fall 2017," news release, November 15, 2017. https://seagrant.uaf.edu/news/2017/docs/Bering-Strait-Saxitoxin-2017-FINAL-Nov-15.pdf (accessed December 12, 2017).

Anderson, D. M. 1989: Toxic algal blooms and red tides: A global perspective, in Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi, D. M. Anderson, and T. Nemoto, Eds., Elsevier, pp. 11-16.

Anderson, D. M., T. J. Alpermann, A. D. Cembella, Y. Collos, E. Masseret, and M. Montresor, 2012: The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14, 10-35.

Baggesen, C., Ø. Moestrup, N. Daugbjerg, B. Krock, A. D. Cembella, and S. Madsen, 2012: Molecular phylogeny and toxin profiles of Alexandrium tamarense (Lebour) Balech (Dinophyceae) from the west coast of Greenland. Harmful Algae, 19, 108-116.

Booth, B. C., and R. A. Horner, 1997: Microalgae on the Arctic Ocean Section, 1994: Species abundance and biomass. Deep-Sea Res. Pt. II-Top. Stud. Oceanogr., 44(8), 1607-1622.

Burrell, S., T. Gunnarsson, K. Gunnarsson, D. Clarke, and A. D. Turner, 2013: First detection of paralytic shellfish poisoning (PSP) toxins in Icelandic mussels (Mytilus edulis): Links to causative phytoplankton species. Food Control, 31(2), 295-301.

Castrodale, L., 2015: Paralytic shellfish poisoning—Alaska, 1993-2014. State of Alaska Epidemiology Bulletin. Available at: http://epibulletins.dhss.alaska.gov/Document/Display?DocumentId=47

Dorantes-Aranda, J. J., A. Seger, J. I. Mardones, P. D. Nichols, and G. M. Hallegraeff, 2015: Progress in understanding algal bloom-mediated fish kills: The role of superoxide radicals, phycotoxins and fatty acids. PLoS One, 10(7), e0133549.

Gessner B. D., and J. P. Middaugh, 1995: Paralytic shellfish poisoning in Alaska: a 20-year retrospective analysis. Am. J. Epidemiol., 141(6):766-70.

Gu, H., N. Zeng, Z. Xie, D. Wang, W. Wang, and W. Yang, 2013: Morphology, phylogeny, and toxicity of Atama complex (Dinophyceae) from the Chukchi Sea. Polar Biol., 36, 427-436.

Hallegraeff, G. M., 1993: A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79-99.

Hallegraeff, G. M., 2010: Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. J. Phycol., 46(2), 220-235.

Harðardóttir, S., M. Pančić, A. Tammilehto, B. Krock, E. F. Møller, T. G. Nielsen, and N. Lundholm, 2015: Dangerous relations in the Arctic marine food web: interactions between toxin producing Pseudo-nitzschia diatoms and Calanus copepodites. Mar. Drugs, 13(6), 3809-3835.

Lefebvre, K. A., et al., 2016: Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae, 55, 13-24.

Moore, S. K., B. D. Bill, L. R. Hay, J. Emenegger, K. C. Eldred, C. L. Greengrove, J. E. Masura, and D. M. Anderson, 2015: Factors regulating excystment of Alexandrium in Puget Sound, WA, USA. Harmful Algae, 43, 103-110.

Natsuike, M., S. Nagai, K. Matsuno, R. Saito, C. Tsukazaki, A. Yamaguchi, and I. Imai, 2013: Abundance and distribution of toxic Alexandrium tamarense resting cysts in the sediments of the Chukchi Sea and the eastern Bering Sea. Harmful Algae, 27, 52-59.

Natsuike, M., K. Matsuno, T. Hirawake, A. Yamaguchi, S. Nishino, and I. Imai, 2017: Possible spreading of toxic Alexandrium tamarense blooms on the Chukchi Sea shelf with the inflow of Pacific summer water due to climatic warming. Harmful Algae, 61, 80-86.

Okolodkov, Y. B. 2005: The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae, 4, 351-369.

Percopo, I., M. V. Ruggiero, S. Balzano, P. Gourvil, N. Lundholm, R. Siano, A. Tammilehto, D. Vaulot, and D. Sarno, 2016: Pseudo-nitzschia arctica sp. nov., a new cold-water cryptic Pseudo-nitzschia species within the P. pseudodelicatissima complex. J. Phycol., 52(2), 184-199.

Poulin, M., N. Daugbjerg, R. Gradinger, L. Ilyash, T. Ratkova, and C. von Quillfeldt, 2011: The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: A first-attempt assessment. Mar. Biodivers., 41(1), 13-28.

Richlen, M. L., O. Zielinski, L. Holinde, U. Tillmann, A. Cembella, Y. Lyu, and D. M. Anderson, 2016: Distribution of Alexandrium fundyense (Dinophyceae) cysts in Greenland and Iceland, with an emphasis on viability and growth in the Arctic. Mar. Ecol. Prog. Ser., 547, 33-46.

Shearn-Bochsler, V., E. W. Lance, R. Corcoran, J. Piatt, B. Bodenstein, E. Frame, and J. Lawonn, 2014: Fatal paralytic shellfish poisoning in Kittlitz's Murrelet (Brachyramphus brevirostris) nestlings, Alaska, USA. J. Wildlife Dis., 50(4), 933-937.

Shumway, S. E., S. M. Allen, and P. D. Boersma, 2003: Marine birds and harmful algal blooms: Sporadic victims or under-reported events? Harmful Algae, 2(1), 1-17.

Tammilehto, A., T. G. Nielsen, B. Krock, E. F. Møller, and N. Lundholm, 2012: Calanus spp.—Vectors for the biotoxin, domoic acid, in the Arctic marine ecosystem? Harmful Algae, 20, 165-174.

Tammilehto, A., T. G. Nielsen, B. Krock, E. F. Møller, and N. Lundholm, 2015: Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. Aquat. Toxicol., 159, 52-61.

Vandersea, M. W., et al., 2017: qPCR assays for Alexandrium fundyense and A. ostenfeldii (Dinophyceae) identified from Alaskan waters and a review of species-specific Alexandrium molecular assays. Phycologia, 56(3), 303-320.

Wells, M. L., V. L. Trainer, T. J. Smayda, B. S. Karlson, C. G. Trick, R. M. Kudela, A. Ishikawa, S. Bernard, A. Wulff, D. M. Anderson, and W. P. Cochlan, 2015: Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae, 49, 68-93.

Microplastics in the Marine Realms of the Arctic with Special Emphasis on Sea Ice

Amélineau, F., D. Bonnet, O. Heitz, V. Mortreux, A. M. A. Harding, N. Karnovsky, W. Walkusz, J. Fort, and D. Grémillet, 2016: Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut., 219, 1131-1139, doi: 10.1016/j.envpol.2016.09.017.

Andrady, A. L., 2015: Persistence of plastic litter in the oceans, in Marine Anthropogenic Litter. M. Bergmann, L. Gutow, and M. Klages, Eds., Springer, pp. 57-72.

Avery-Gomm, S., J. F. Provencher, M. Liboiron, F. E. Poon, and P. A. Smith, 2018: Plastic pollution in the Labrador Sea: An assessment using the seabird northern fulmar Fulmarus glacialis as a biological monitoring species. Mar. Pollut. Bull., 127, 817-822.

Barrows, A. P. W., S. E. Cathey, and C. W. Petersen, 2018: Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut., 237, 275-284.

Bergmann, M., M. B. Tekman, and L. Gutow, 2017: Marine litter: Sea change for plastic pollution. Nature, 544, 297, doi: 10.1038/544297a.

Cózar, A., et al., 2017: The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv., 3, e1600582, doi: 10.1126/sciadv.1600582.

Eguíluz, V. M., J. Fernández-Gracia, X. Irigoien, and C. M. Duarte, 2016: A quantitative assessment of Arctic shipping in 2010-2014. Sci. Rep., 6, 30682, doi: 10.1038/srep30682.

Ellis, B., and L. Brigham, 2009: Arctic Marine Shipping Assessment 2009 Report. Arctic Council, Tromsø, Norway. http://hdl.handle.net/11374/54.

Fang, C., et al., 2018: Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere, 209, 298-306, doi: 10.1016/j.chemosphere.2018.06.101.

Galloway, T. S., 2015: Micro- and nano-plastics and human health, in Marine Anthropogenic Litter. M. Bergmann, L. Gutow, and M. Klages, Eds., Springer, pp. 343-366.

Hidalgo-Ruz, V., L. Gutow, R. C. Thompson, and M. Thiel, 2012: Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol., 46, 3060-3075.

Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law, 2015: Plastic waste inputs from land into the ocean. Science, 347, 768-771.

Kanhai, L. D., K. K. Gårdfeldt, O. Lyashevska, M. Hassellöv, R. C. Thompson, and I. O'Connor, 2018: Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull., 130, 8-18.

Kershaw, P. J., Ed., 2015: Sources, fate and effects of microplastics in the marine environment: A global assessment. Rep. Stud. GESAMP 90. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 96 pp.

Kershaw, P., and C. M. Rochman, 2016: Sources, fate and effects of microplastics in the marine environment: Part two of a global assessment. Rep. Stud. GESAMP 93. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 220 pp.

Kühn, S., F. L. Schaafsma, B. van Werven, H. Flores, M. Bergmann, M. Egelkraut-Holtus, M. B. Tekman, and J. A. van Franeker, 2018: Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol., 41, 1269-1278.

Leclerc, L. -M. E., C. Lydersen, T. Haug, L. Bachmann, A. T. Fisk, and K. M. Kovacs, 2012: A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol., 35, 1197-1208.

Lusher, A. L., 2015: Microplastics in the marine environment: Distribution, interactions and effects, p. 245-307, in Marine Anthropogenic Litter. M. Bergmann, L. Gutow, and M. Klages, Eds., Springer, pp. 245-307.

Lusher, A. L., V. Tirelli, I. O'Connor, and R. Officer, 2015: Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep., 5, 14947, doi: 10.1038/srep14947.

Mallory, M. L., G. J. Roberston, and A. Moenting, 2006: Marine plastic debris in northern fulmars from Davis Strait, Nunavut, Canada. Mar. Pollut. Bull., 52, 813-815.

Miller, A. W., and G. M. Ruiz, 2014: Arctic shipping and marine invaders. Nat. Clim. Change, 4, 413-416.

Morgana, S., L. Ghigliotti, N. Estévez-Calvar, R. Stifanese, A. Wieckzorek, T. Doyle, J. S. Christiansen, M. Faimali, and F. Garaventa, 2018: Microplastics in the Arctic: A case study with sub-surface water and fish samples off Northeast Greenland. Environ Pollut. B, 242, 1078-1086, doi: 10.1016/j.envpol.2018.08.001.

Nielsen, J., R. B. Hedeholm, M. Simon, and J. F. Steffensen, 2014: Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol., 37, 37-46.

Nurnberg, D., I. Wollenburg, D. Dethleff, H. Eicken, H. Kassens, T. Letzig, E. Reimnitz, and J. Thiede, 1994: Sediments in Arctic sea ice: Implications for entrainment, transport and release. Mar. Geol., 119, 185-214.

Obbard, R. W., S. Sadri, Y. Q. Wong, A. A. Khitun, I. Baker, and R. C. Thompson, 2014: Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2, 315-320.

Peeken, I., S. Primpke, B. Beyer, J. Gütermann, C. Katlein, T. Krumpen, M. Bergmann, L. Hehemann, and G. Gerdts, 2018: Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun., 9, 1505, doi: 10.1038/s41467-018-03825-5.

Polyakov, I. V., J. E. Walsh, and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Am. Meteorol. Soc., 93, 145-151.

Poon, F. E., J. F. Provencher, M. L. Mallory, B. M. Braune, and P. A. Smith, 2017: Levels of ingested debris vary across species in Canadian Arctic seabirds. Mar. Pollut. Bull., 116, 517-520.

Provencher, J. F., A. J. Gaston, M. L. Mallory, P. D. O'Hara, and H. G. Gilchrist, 2010: Ingested plastic in a diving seabird, the thick-billed murre (Uria lomvia), in the eastern Canadian Arctic. Mar. Pollut. Bull., 60, 1406-1411.

Robards, M. D., J. F. Piatt, and K. D. Wohl, 1995: Increasing frequency of plastic particles ingested by seabirds in the sub-Arctic North Pacific. Mar. Pollut. Bull., 30, 151-157.

Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic's rapidly shrinking sea ice cover: A research synthesis. Clim. Change, 110, 1005-1027.

Tekman, M. B., T. Krumpen, and M. Bergmann, 2017: Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep-Sea Res. Pt. I, 120, 88-99.

Thompson, R. C. 2015: Microplastics in the marine environment: sources, consequences and solutions, in Marine Anthropogenic Litter. M. Bergmann, L. Gutow, and M. Klages, Eds., Springer, pp. 185-200.

van Franeker, J. A., 1985: Plastic ingestion in the North Atlantic fulmar. Mar. Pollut. Bull., 16, 367-369.

Woodall, L. C., et al., 2014: The deep sea is a major sink for microplastic debris. Roy. Soc. Open Sci., 1, 140317, doi: 10.1098/rsos.140317.

Landfast Sea Ice in a Changing Arctic

Alt, B., K. Wilson, and T. Carrières, 2006: A case study of old-ice import and export through Peary and Sverdrup Channels in the Canadian Arctic Archipelago: 1998-2005. Ann. Glaciol., 44, 329-338.

Bareiss, J., H. Eicken, A. Helbig, and T. Martin, 1999: Impact of river discharge and regional climatology on the decay of sea ice in the Laptev Sea during spring and early summer. Arct. Antarct. Alp. Res., 31, 214-229.

Barnes, P. W., E. Reimnitz, and L. J. Toimil, 1978: Stamukhi zone processes: Implications for developing the Arctic offshore area. J. Petrol. Technol., 30, 982-986.

Barry, R. G., R. E. Moritz, and J. C. Rogers, 1979: The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. Cold Reg. Sci. Technol., 1, 129-152.

Behe, C., and R. Daniel, 2018: Indigenous knowledge and the coproduction of knowledge process: Creating a holistic understanding of arctic change [in "State of the Climate in 2017"]. Bull. Am. Meteorol. Soc., 99, S160-S161.

Brown, R. D., and P. Cote, 1992: Interannual variability of landfast ice thickness in the Canadian High Arctic, 1950-89. Arctic, 45, 273-284.

Dammann, D., L. Eriksson, A. Mahoney, C. Stevens, J. van der Sanden, H. Eicken, F. Meyer, and C. Tweedie, 2018a: Mapping Arctic bottomfast sea ice using SAR interferometry. Remote Sens., 10, 720.

Dammann, D. O., L. E. B. Eriksson, A. R. Mahoney, H. Eicken, and F. J. Meyer, 2018b: Landfast sea ice stability - mapping pan-Arctic ice regimes with implications for ice use, subsea permafrost and marine habitats. Cryosphere Discuss., doi: 10.5194/tc-2018-129.

Dammann, D. O., H. Eicken, A. R. Mahoney, F. J. Meyer, J. T. Freymueller, and A. M. Kaufman, 2018c: Evaluating landfast sea ice stress and fracture in support of operations on sea ice using SAR interferometry. Cold Reg. Sci. Technol., 149, 51-64, doi: 10.1016/j.coldregions.2018.02.001.

Divine, D., R. Korsnes, and A. Makshtas, 2003: Variability and climate sensitivity of fast ice extent in the north-eastern Kara Sea. Polar Res., 22, 27-34.

Divine, D. V., R. Korsnes, and A. P. Makshtas, 2004: Temporal and spatial variation of shore-fast ice in the Kara Sea. Cont. Shelf Res., 24, 1717-1736.

Dmitrenko, I. A., K. N. Tyshko, V. N. Churun, J. A. Hoelemann, H. Eicken, H. Kassens, and S. A. Kirillov, 2005: Impact of flaw polynyas on the hydrography of the Laptev Sea. Global Planet. Change, 48, 9-27.

Druckenmiller, M. L., H. Eicken, J. C. George, and L. Brower, 2010: Assessing the shorefast ice: Iñupiat whaling trails off Barrow, Alaska, in SIKU: Knowing Our Ice, I. Krupnik, C. Aporta, S. Gearheard, G. J. J. Laidler, and L. K. Kielsen Holm, Eds., Springer Netherlands, pp. 203-228.

Eicken, H., R. Gradinger, A. Graves, A. Mahoney, I. Rigor, and H. Melling, 2005a: Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions? Deep-Sea Res. II, 52, 3281-3302.

Eicken, H., I. Dmitrenko, K. Tyshko, A. Darovskikh, W. Dierking, U. Blahak, J. Groves, and H. Kassens, 2005b: Zonation of the Laptev Sea landfast ice cover and its importance in a frozen estuary. Global Planet. Change, 48, 55-83.

Eicken, H., R. Gradinger, T. Heinrichs, M. A. Johnson, A. L. Lovecraft, and M. Kaufman, 2012: Automated ice mass balance site data (SIZONET).NSF Arctic Data Center. https://arcticdata.io/catalog/#view/doi:10.18739/A2BM0G

Eicken, H., M. Kaufman, I. Krupnik, P. Pulsifer, L. Apangalook, P. Apangalook, W. Weyapuk, and J. Leavitt, 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geogr., 37, 5-27.

Ford, J. D., T. Pearce, J. Gilligan, B. Smit, and J. Oakes, 2008: Climate change and hazards associated with ice use in Northern Canada. Arct. Antarct. Alp. Res., 40, 647-659.

Ford, J. D., W. A. Gough, G. J. Laidler, J. MacDonald, C. Irngaut, and K. Qrunnut, 2009: Sea ice, climate change, and community vulnerability in northern Foxe Basin, Canada. Clim. Res., 38, 137-154.

Furgal, C., and J. Seguin, 2006: Climate change, health, and vulnerability in Canadian northern Aboriginal communities. Environ. Health Perspect., 114, 1964-1970.

Galley, R. J., B. G. T. Else, S. E. L. Howell, J. V. Lukovich, and D. G. Barber, 2012: Landfast sea ice conditions in the Canadian Arctic: 1983-2009. Arctic, 65, 133-144.

George, J. C., H. P. Huntington, K. Brewster, H. Eicken, D. W. Norton, and R. Glenn, 2004: Observations on shorefast ice dynamics in Arctic Alaska and the responses of the Iñupiat hunting community. Arctic, 57, 363-374.

Gerland, S., A. H. H. Renner, F. Godtliebsen, D. Divine, and T. B. Løyning, 2008: Decrease of sea ice thickness at Hopen, Barents Sea, during 1966-2007. Geophys. Res. Lett., 35, L06501, doi: 10.1029/2007GL032716.

Granskog, M. A., J. Ehn, and M. Niemelä, 2005: Characteristics and potential impacts of under-ice river plumes in the seasonally ice-covered Bothnian Bay (Baltic Sea). J. Mar. Sys., 53, 187-196.

Granskog, M., H. Kaartokallio, H. Kuosa, D. N. Thomas, and J. Vainio, 2006: Sea ice in the Baltic Sea - A review. Estuar., Coast. Shelf Sci., 70, 145-160.

Hata, Y., and L. B. Tremblay, 2015a: A 1.5-D anisotropic sigma-coordinate thermal stress model of landlocked sea ice in the Canadian Arctic Archipelago. J. Geophys. Res.-Oceans, 120, 8251-8269, doi: 10.1002/2015JC010820.

Hata, Y., and L. B. Tremblay, 2015b: Anisotropic internal thermal stress in sea ice from the Canadian Arctic Archipelago. J. Geophys. Res.-Oceans, 120, 5457-5472, doi: 10.1002/2015JC010819.

Howell, S. E. L., F. Laliberté, R. Kwok, C. Derksen, and J. King, 2016: Landfast ice thickness in the Canadian Arctic Archipelago from observations and models. Cryosphere, 10, 1463-1475.

Ingram, G., 1987: Under-ice characteristics of La Grande Riviere Plume. Atmos. Ocean, 25, 242-250.

Itkin, P., M. Losch, and R. Gerdes, 2015: Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model. J. Geophys. Res.-Oceans, 120, 2622-2635.

Jacobs, J. D., R. G. Barry, and R. L. Weaver, 1975: Fast ice characteristics, with special reference to the eastern Canadian Arctic. Polar Rec., 110, 521-536.

Jones, J., H. Eicken, A. Mahoney, M. Rohith, C. Kambhamettu, Y. Fukamachi, K. I. Ohshima, and J. C. George, 2016: Landfast sea ice breakouts: Stabilizing ice features, oceanic and atmospheric forcing at Barrow, Alaska. Cont. Shelf Res., 126, 50-63.

Kasper, J. L., and T. J. Weingartner, 2015: The spreading of a buoyant plume beneath a landfast ice cover. J. Phys. Oceanogr., 45, 478-494.

Laidler, G. J., J. D. Ford, W. A. Gough, T. Ikummaq, A. S. Gagnon, S. Kowal, K. Qrunnut, and C. Irngaut, 2009: Travelling and hunting in a changing Arctic: Assessing Inuit vulnerability to sea ice change in Igloolik, Nunavut. Clim. Change, 94, 363-397.

Laidre, K. L., H. Stern, K. M. Kovacs, L. Lowry, S. E. Moore, E. V. Regehr, S. H. Ferguson, Ø. Wiig, P. Boveng, R. P. Angliss, E. W. Born, D. Litovka, L. Quakenbush, C. Lydersen, D. Vongraven, and F. Ugarte, 2015: Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol., 29, 724-737.

Lantuit, H., and W. H. Pollard, 2008: Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology, 95, 84-102.

Lemieux, J. -F., L. B. Tremblay, F. Dupont, M. Plante, G. C. Smith, and D. Dumont, 2015: A basal stress parameterization for modeling landfast ice. J. Geophys. Res.-Oceans, 120, 3157-3173.

Lovvorn, J. R., A. R. Rocha, A. H. Mahoney, and S. C. Jewett, 2018: Sustaining ecological and subsistence functions in conservation areas: eider habitat and access by Native hunters along landfast ice. Environ. Conserv., 45, 361-369, doi: 10.1017/S0376892918000103.

Mahoney, A. R., H. Eicken, and L. Shapiro, 2007: How fast is landfast sea ice? A study of the attachment and detachment of nearshore ice at Barrow, Alaska. Cold Reg. Sci. Technol., 47, 233-255.

Mahoney, A., S. Gearheard, T. Oshima, and T. Qillaq, 2009: Sea ice thickness measurements from a community-based observing network. Bull. Am. Meteorol. Soc., 90, 370-377.

Mahoney, A. R., H. Eicken, A. G. Gaylord, and R. Gens, 2014: Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Reg. Sci. Technol., 103, 41-56.

Masterson, D. M., 2009: State of the art of ice bearing capacity and ice construction. Cold Reg. Sci. Technol., 58, 99-112.

Melling, H., 2002: Sea ice of the northern Canadian Arctic Archipelago. J. Geophys. Res., 107, 3181, doi: 10.1029/2001JC001102.

Meyer, F. J., A. R. Mahoney, H. Eicken, C. L. Denny, H. C. Druckenmiller, and S. Hendricks, 2011: Mapping arctic landfast ice extent using L-band synthetic aperture radar interferometry. Remote Sens. Environ., 115, 3029-3043.

Olason, E., 2016: A dynamical model of Kara Sea land-fast ice. J. Geophys. Res.-Oceans, 121, 3141-3158.

Petrich, C., H. Eicken, J. Zhang, J. Krieger, Y. Fukamachi, and K. I. Ohshima, 2012: Coastal landfast sea ice decay and breakup in northern Alaska: Key processes and seasonal prediction. J. Geophys. Res.-Oceans, 117, C02003, doi: 10.1029/2011JC007339.

Pickart, R. S., G. W. K. Moore, D. J. Torres, P. S. Fratantoni, R. A. Goldsmith, and J. Y. Yang, 2009: Upwelling on the continental slope of the Alaskan Beaufort Sea: Storms, ice, and oceanographic response. J. Geophys. Res.-Oceans, 114, C00A13, doi: 10.1029/2008JC005009.

Polyakov, I., G. V. Alekseev, R. V. Bekryaev, U. S. Bhatt, R. L. Colony, M. A. Johnson, V. P. Karklin, D. Walsh, and A. V. Yulin, 2003: Long-term ice variability in Arctic marginal seas. J. Clim., 16, 2078-2085.

Pope, S., L. Copland, and D. Mueller, 2012: Loss of multiyear landfast sea ice from Yelverton Bay, Ellesmere Island, Nunavut, Canada. Arct. Antarct. Alp. Res., 44, 210-221.

Potter, R. E., J. T. Walden, and R. A. Haspel, 1981: Design and construction of sea ice roads in the Alaskan Beaufort Sea. OTC-4080-MS. Offshore Technology Conference, 135-140, doi: 10.4043/4080-MS.

Reimnitz, E., and P. Barnes, 1974: Sea ice as a geologic agent on the Beaufort Sea shelf of Alaska, in The coast and shelf of the Beaufort Sea. J. C. Reed, and J. E. Sater, Eds., Arctic Institute of North America, pp. 301-353.

Reimnitz, E., L. Toimil, and P. Barnes, 1978: Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska. Mar. Geol., 28, 179-210.

Reimnitz, E., H. Eicken, and T. Martin, 1995: Multi-year fast ice along the Taymyr Peninsula, Siberia. Arctic, 48, 359-367.

Selyuzhenok, V., T. Krumpen, A. Mahoney, M. Janout, and R. Gerdes, 2015: Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013. J. Geophys. Res.-Oceans, 120, 7791-7806.

Selyuzhenok, V., A. Mahoney, T. Krumpen, G. Castellani, and R. Gerdes, 2017: Mechanisms of fast-ice development in the south-eastern Laptev Sea: a case study for winter of 2007/08 and 2009/10. Polar Res., 36, 1411140, doi: 10.1080/17518369.2017.1411140.

Smith, T. G., and M. O. Hammill, 1981: Ecology of the ringed seal, Phoca hispida, in its fast ice breeding habitat. Can. J. Zool., 59, 966-981.

Stringer, W. J., 1978: Morphology of Beaufort, Chukchi and Bering Seas near shore ice conditions by means of satellite and aerial remote sensing. Environmental assessment of the Alaskan continental shelf. Principal investigators' annual reports for the year ending March 1978. vol.X: Transport, Outer Continental Shelf Environmental Assessment Program, 1-220.

Tibbles, M., J. A. Falke, A. R. Mahoney, M. D. Robards, and A. C. Seitz, 2018: An InSAR habitat suitability model to identify overwinter conditions for coregonine whitefishes in Arctic lagoons. Trans. Am. Fish. Soc., 147, 1167-1178, doi: 10.1002/tafs.10111.

Yu, Y., H. Stern, C. Fowler, F. Fetterer, and J. Maslanik, 2013: Interannual variability of Arctic landfast ice between 1976 and 2007. J. Clim., 27, 227-243.

Print

x

Focus Areas

Arctic Report Card

Tracking recent environmental changes relative to historical records

More

Oceans

Conserving and managing our Arctic Ocean resources

Weather

Providing weather information to protect lives, property, and management

More

Satellites

Observing the Arctic ocean and atmosphere to understand and forecast Arctic change

More

Research

Providing environmental intelligence to understanding the complex Arctic system

More

Fisheries

Conserving and managing Arctic living marine resources and their habitats

More

ArcticProgram_edit

CONTACT US

Feel free to contact us and find out more about the Arctic Program

Copyright 2019 by Arctic Program Terms Of Use Privacy Statement
Back To Top