Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Arctic Report Card: Update for 2017
Arctic shows no sign of returning to reliably frozen region of recent past decades
Archive of previous Arctic Report Cards
2017 Arctic Report Card


Surface Air Temperature

Acosta Navarro, J. C., et al., 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geosci., 9, 277-281.

Kim, B. -M., S. -W. Son, S. -K. Min, J. -H. Jeong, S. -J. Kim, X. Zhang, T Shim, and J. -H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

Lenaerts, J. T. M., K. Van Tricht, S. Lhermitte, and T. S. L’Ecuyer, 2017: Polar clouds and radiation in satellite observations, reanalyses and climate models. Geophys. Res. Lett., 44, 3355-3364, doi: 10.1002/2016GL072242.

Makshtas, A. P., I. I. Bolshakova, R. M. Gun, O. L. Jukova, N. E. Ivanov, and S. V. Shutilin, 2011: Climate of the Hydrometeorological Observatory Tiksi region. In Meteorological and Geophysical Investigations. Paulsen, 2011, 49-74.

Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747-750, doi: 10.1126/science.aag2345.

Overland, J. E., 2009: The case for global warming in the Arctic. In: Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, J. C. J. Nihoul and A. G. Kostianoy (eds.), Springer, 13-23.

Overland, J. E., E. Hanna, I. Hanssen-Bauer, B. -M. Kim, S. -J. Kim, J. Walsh, M. Wang, and U. Bhatt, 2015: Air Temperature. In: Arctic Report Card: Update for 2015,

Overland, J. E., M. Wang, and T. J. Ballinger, 2017: Recent Increased Warming of the Alaskan Marine Arctic Due to Mid-latitude Linkages. Adv. Atmos. Sci., 35, doi: 10.1007/s00376-017-7026-1.

Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geosci., 7, 181-184, doi: 10.1038/ngeo2071.

Serreze, M., and R. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 85-96.

Terrestrial Snow Cover

Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction, J. Appl. Meteorol., 38, 726-740.

Brown, R., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation, Atmos.-Ocean., 41, 1-14.

Brown, R., and C. Derksen. 2013. Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8: 024006 doi: 10.1088/1748-9326/8/2/024006.

Brown, R., D. Vikhamar Schuler, O. Bulygina, C. Derksen, K. Luojus, L. Mudryk, L. Wang, and D. Yang, 2017: Arctic terrestrial snow cover, Chapter 3 in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 Assessment, Arctic Monitoring and Assessment Programme, Oslo, Norway.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses, J. Hydrometeorol., 14, 203-219, DOI: 10.1175/JHM-D-12-012.1.

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring, Earth Sys. Sci. Data, 7.1, 137-142.

Helfrich, S., D. McNamara, B. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576-1586.

Mudryk, L., P. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles, Geophys. Res. Lett., 44, DOI: 10.1002/2016GL071789.

Reichle, R., C. Draper, Q. Liu, M. Girotto, S. Mahanama, R. Koster, and G. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates, J. Clim., 30, DOI: 10.1175/JCLI-D-16-0720.1.

Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. -P. Kärnä, and J. Koskinen, 2011: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115, 3517-3529.

Greenland Ice Sheet

Box, J. E., and K. Hansen, 2015: Survey of Greenland glacier area changes. PROMICE newsletter 8, December 2015,

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geological Survey of Denmark and Greenland Bulletin, 38, 53-56.

Khan, S. A., I. Sasgen, M. Bevis, T. van Dam, J. L. Bamber, J. Wahr, M. Willis, K. H. Kjær, B. Wouters, V. Helm, and B. Csatho, 2016: Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2(9), e1600931.

Mote, T., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophysical Research Letters, 34, L22507.

Nghiem, S. V., D. K. Hall, T. L. Mote, M. Tedesco, M. R. Albert, K. Keegan, C. A. Shuman, N. E. DiGirolamo, and G. Neumann, 2012: The extreme melt across the Greenland ice sheet in 2012.Geophysical Research Letters, 39, L20502, doi: 10.1029/2012GL053611.

Sasgen, I., M. van den Broeke, J. L. Bamber, E. Rignot, L. S. Sørensen, B. Wouters, Z. Martinec, I. Velicogna, I., and S. B. Simonsen, 2012: Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333, 293-303.

Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7, 615-630.

van As, D., R. S. Fausto, J. Cappelen, R. S. W. van de Wal, R. J. Braithwaite, H. Machguth, and PROMICE project team, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. Geological Survey of Denmark and Greenland Bulletin, 35, 71-74.

van de Wal, R. S. W., W. Boot, C. J. P. P. Smeets, H Snellen, M. R. van den Broeke, and J. Oerlemans, 2012: Twenty-one years of mass balance observations along the K-transect, West-Greenland. Earth System Science Data, 4, 31-35, doi: 10.5194/essd-4-31-2012.

Velicogna I., T. C. Sutterley, and M. van den Broeke, 2014: Spatially varying ice mass acceleration of the polar ice sheets from GRACE. Geophysical Research Letters, 41(22), 8130-8137.

Velicogna, I., and J. Wahr, 2006: Significant acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 329–331, doi: 10.1038/nature05168.

Sea Ice

Blanchard-Wrigglesworth, E., S. L. Farrell, T. Newman, and C. M. Bitz, 2015: Snow cover on Arctic sea ice in observations and an Earth System Model. Geophys. Res. Lett., doi: 10.1002/2015GL066049.

Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002, updated daily: Sea Ice Index. Boulder, Colorado USA: National Snow and Ice Data Center.

Granskog, M. A., A. Rösel, P. A. Dodd, D. Divine, S. Gerland, T. Martma, and M. J. Leng, 2017: Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard. J. Geophys. Res.-Oceans, 22, doi: 10.1002/2016JC012398.

Kurtz, N. T., and S. L. Farrell, 2011: Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett., 38, L20505, doi: 10.1029/2011GL049216.

Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008. Geophys. Res. Lett., 36, doi: 10.1029/2009GL039035.

Laxon, S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R. Cullen, R. Kwok, A. Schweiger, J. Zhang, C. Haas, S. Hendricks, R. Krishfield, N. Kurtz, S. Farrell, and M. Davidson, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732-737, doi: 10.1002/grl.50193.

Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9:269-283.

Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, doi: 10.1029/2011GL047735.

Meier, W. N., G. Hovelsrud, B. van Oort, J. Key, K. Kovacs, C. Michel, M. Granskog, S. Gerland, D. Perovich, A. P. Makshtas, and J. Reist, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 41, doi: 10.1002/2013RG000431.

Parkinson, C., and N. DiGirolamo, 2016: New visualizations highlight new information on the contrasting Arctic and antarctic sea-ice trends since the late 1970s. Rem. Sens. Envir., 183, 198-204,

Tschudi, M. A., C. Fowler, J. A. Maslanik, and J. A. Stroeve, 2010: Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Sel. Topics Earth Obs. and Rem. Sens., 3, doi: 10.1109/JSTARS.2010.2048305.

Tschudi, M., C. Fowler, and J. Maslanik, 2015: EASE-Grid Sea Ice Age, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: 10.5067/1UQJWCYPVX61.

Tschudi, M. A., J. C. Stroeve, and J. Scott Stewart, 2016: Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge Campaigns. Remote Sens., 8(6), 457; doi: 10.3390/rs8060457.

Warren, S., I. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Clim., 12, 1814-1829.

Webster, M. A., I. G. Rigor, S. V. Nghiem, N. T. Kurtz, S. L. Farrell, D. K. Perovich, and M. Sturm, 2014: Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res.-Oceans, 119, 5395-5406, doi: 10.1002/2014JC009985.

Sea Surface Temperature

Parkinson, C. L., 2014: Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett., 41, 4316-4322, doi: 10.1002/2014GL060434.

Pinker, R. T., X. Niu, and Y. Ma, 2014: Solar heating of the Arctic Ocean in the context of ice-albedo feedback. J. Geophys. Res. Oceans, 119, 8395-8409, doi: 10.1002/2014JC010232.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, and see

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res. Oceans, 120, 7223-7236, doi: 10.1002/2015JC011005.

Timmermans, M. -L., I. Ashik, Y. Cao, I. Frolov, R. Ingvaldsen, T. Kikuchi, R. Krishfield, H. Loeng, S. Nishino, R. Pickart, B. Rabe, I. Semiletov, U. Schauer, P. Schlosser, N. Shakhova, W. M. Smethie, V. Sokolov, M. Steele, J. Su, J. Toole, W. Williams, R. Woodgate, J. Zhao, W. Zhong, and S. Zimmermann, 2013: [The Arctic] Ocean Temperature and Salinity [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 94(8), S128-S130.

Timmermans, M. -L., 2015: The impact of stored solar heat on Arctic sea-ice growth. Geophys. Res. Lett., 42, doi: 10.1002/2015GL064541.

Timmermans, M. -L., 2017: [The Arctic] Sea Surface Temperature [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S135-S136.

Arctic Ocean Primary Productivity

Alexeev, V. A., V. V. Ivanov, R. Kwok, and L. H. Smedsrud, 2013: North Atlantic warming and declining volume of arctic sea ice. The Cryosphere Discuss., 7, 245-265, doi: 10.5194/tcd-7-245-2013.

Ardyna, M., M. Babin, E. Devred, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnology and Oceanography, 62, 2113-2132, doi: 10.1002/lno.10554.

Babin, M., S. Bélanger, I. Ellinsten, A. Forest, V. Le Fouest, T. Lacour, M. Ardyna, and D. Slagstad, 2015: Estimation of primary production in the Arctic Ocean using ocean colour remote sensing and coupled physical-biological models: Strengths, limitations and how they compare. Progress in Oceanography, 139, 197-220, doi: 10.1016/j.pocean.2015.08.008.

Barber, D. G., H. Hop, C. J. Mundy, B. Else, I. A. Dmitrenko, J. -É. Tremblay, J. K. Ehn, P. Assmy, M. Daase, L. M. Candlish, and S. Rysgaard, 2015: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Progress in Oceanography, 139, 122-150, doi: 10.1016/j.pocean.2015.09.003.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1), 1-20.

Bélanger, S., M. Babin, and J. -É. Tremblay, 2013: Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences, 10, 4087-4101, doi: 10.5194/bg-10-4087-2013.

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. Zwally, 1996, updated yearly: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. [2003-2014]. Boulder, Colorado, USA: NASA DAAC at the National Snow and Ice Data Center.

Chaves, J., P. J. Werdell, C. W. Proctor, A. R. Neeley, S. A. Freeman, C. S. Thomas, and S. B. Hooker, 2015: Assessment of ocean color data records from MODIS-Aqua in the western Arctic Ocean. Deep-Sea Research II-Part A, 118, 32-43, doi: 10.1016/j.dsr2.2015.02.011.

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea levels: Effects on physicochemical parameters in Climate and Fresh Water Toxins, L. M. Botana, M. C. Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany.

Demidov, A. B., S. A. Mosharov, and P. N. Makkaveev, 2014: Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer. Journal of Marine Systems, 132, 130-149, doi: 10.1016/j.jmarsys.2014.01.014.

Hill, V., M. Ardyna, S. H. Lee, and D. E. Varela, 2017: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Research Part II,

Kahru, M., 2017: Ocean productivity from space: Commentary. Global Biogeochem. Cycles, 31, 214-216, doi: 10.1002/2016GB005582.

Lee, Y. J., et al., 2015: An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models. Journal of Geophysical Research-Oceans, 120, 6508-6541, doi: 10.1002/2015JC011018.

Leu, E., C. J. Mundy, P. Assmy, K. Campbell, T. M. Gabrielsen, M. Gosselin, T. Juul-Pedersen, and R. Gradinger, 2015: Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139, 151-170,

Maslanik, J., and J. Stroeve, 1999, updated daily: Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations. [2016]. Boulder, Colorado, USA: NASA DAAC at the National Snow and Ice Data Center.

Müller-Karger, F. E., R. Varela, R. Thunell, R. Luerssen, C. Hu, and J. J. Walsh, 2005: The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32, L01602, doi: 10.1029/2004GL021346.

Tremblay, J. -É., L. G. Anderson, P. Matrai, S. Bélanger, C. Michel, P. Coupel, and M. Reigstad, 2015: Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Progress in Oceanography, 139, 171-196, doi: 10.1016/j.pocean.2015.08.009.

Tundra Greenness

Bhatt, U., D. Walker, R. Raynolds, P. Bieniek, H. Epstein, J. Comiso, C. Tucker, M. Steele, W. Ermold, and J. Zhang, 2017: Changing seasonality of Panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett., 12, 055003.

Bjerke, J. W., R. Treharne, D. Vikhamar-Schuler, S. R. Karlsen, V. Ravolainen, S. Bokhorst, G. K. Phoenix, Z. Bochenek, and H. Tømmervik, 2017: Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Tot. Environ., doi: 10.1016/j.scitotenv.2017.05.050.

Fauchald, P., T. Park, H. Tømmervik, R. Myneni, and V. Helene Hauser, 2017: Arctic greening from warming promotes declines in caribou populations. Sci. Adv., 3, e1601365.

Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina, 2017: Seasonal and long-term changes in active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems, 16, 1296.

Global Inventory Modeling and Mapping Studies (GIMMS), 2013: Available online:

Horstkotte, T., T. Utsi, Å. Larsson-Blind, P. Burgess, B. Johansen, J. Käyhkö, L. Oksanen, and B. C. Forbes, 2017: Human-animal agency in reindeer management: herders’ perspectives on vegetation dynamics under climate change. Ecosphere, 8(9), e01931, doi: 10.1002/ecs2.1931.

Kępski, D., B. Luks, K. Migala, T. Wawrzyniak, S. Westermann, and B. Wojtuń, 2017: Terrestrial remote sensing of snowmelt in a diverse High-Arctic tundra environment using time-lapse imagery. Remote Sens., 9, 733.

Macias-Fauria, M., S. R. Karlsen, and B. C. Forbes, 2017: Disentangling the coupling between sea ice and tundra productivity in Svalbard. Sci. Reports, 7, 8586.

Martin, A. C., E. S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias-Fauria, 2017: Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ. Res. Lett., 12, 085007.

Myers-Smith, I. H., and D. S. Hik, 2017: Climate warming as a driver of tundra shrubline advance. J. Ecol., doi: 10.1111/1365-2745.12817.

Pinzon, J., and C. Tucker, 2014: A non-stationary 1981-2014 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960, doi: 10.3390/rs6086929.

Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403-411.

Vickers, H., K. A. Høgda, S. Solbø, S. R. Karlsen, H. Tømmervik, R. Aanes, and B. Hansen, 2016: Change in greening in the high Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett., 11, 105004.

Vikhamar-Schuler, D., K. Isaksen, J. E. Haugen, H. Tømmervik, B. Luks, T. Vikhamar Schuler, and J. W. Bjerke, 2016: Change in winter warming events in the Nordic Arctic Region. J. Clim., doi: 10.1175/JCLI-D-15-0763.1.

Westergaard-Nielsen, A., M. Lund, S. H. Pedersen, N. M. Schmidt, S. Klosterman, J. Abermann, and B. U. Hansen, 2017: Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio, 46, S39-S52.

Terrestrial Permafrost

Boike, J., I. Juszak, S. Lange, S. Chadburn, E. Burke, P. P. Overduin, K. Roth, O. Ippisch, N. Bornemann, L. Stern, I. Gouttevin, E. Hauber, and S. Westermann, 2017: A 20-year record (1998-2017) of permafrost, active layer, and meteorological conditions at a High Arctic permafrost research site (Bayelva, Spitsbergen): an opportunity to validate remote sensing data and land surface, snow, and permafrost models, Earth System Science Data Discussions, 1-86, doi: 10.5194/essd-2017-100.

Christiansen, H. H., B. Etzelmüller, K. Isaksen, H. Juliussen, H. Farbrot, O. Humlum, M. Johansson, T. Ingeman-Nielsen, L. Kristensen, J. Hjort, P. Holmlund, A. B. K. Sannel, C. Sigsgaard, H. J. Åkerman, N. Foged, L. H. Blikra, M. A. Pernosky, and R. Ødegård, 2010: The thermal state of permafrost in the Nordic area during the International Polar Year, Permafrost and Periglacial Processes, 21, 156-181, doi: 10.1002/ppp.687.

Drozdov, D., Y. Rumyantseva, G. Malkova, V. Romanovsky, A. Abramov, P. Konstantinov, D. Sergeev, N. Shiklomanov, A. Kholodov, O. Ponomareva, and D. Streletskiy, 2015: Monitoring of permafrost in Russia and the international GTN-P project. 68th Canadian Geotechnical Conference – GEOQuébec 2015, Québec, Canada, September 20-23, 2015.

Duchesne, C., S. L. Smith, M. Ednie, and P. P. Bonnaventure, 2015: Active layer variability and change in the Mackenzie Valley, Northwest Territories. Paper 117. In GEOQuébec 2015 (68th Canadian Geotechnical Conference and 7th Canadian Conference on Permafrost). Québec. GEOQuébec 2015 Organizing Committee.

Ednie, M., and S. L. Smith, 2015: Permafrost temperature data 2008-2014 from community based monitoring sites in Nunavut, Geological Survey of Canada Open File, 7784.

Farbrot, H., K. Isaksen, B. Etzelmüller, and K. Gisnås, 2013: Ground thermal regime and permafrost distribution under a changing climate in northern Norway. Permafrost and Periglacial Processes, 24, 20-38. doi: 10.1002/ppp.1763.

Isaksen, K., R. S. Ødegård, B. Etzelmüller, C. Hilbich, C. Hauck, H. Farbrot, T. Eiken, H. O. Hygen, and T. F. Hipp, 2011: Degrading mountain permafrost in southern Norway: spatial and temporal variability of mean ground temperatures, 1999-2009, Permafrost and Periglacial Processes, 22, 361-377, doi: 10.1002/ppp.728.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of American Meteorological Society, 77, 437-471, doi: 10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2.

Romanovsky, V. E, W. L. Cable, and A. L. Kholodov, 2015: Changes in Permafrost and Active-layer Temperatures along an Alaskan Permafrost-Ecological Transect. Paper 479. In GEOQuébec 2015 (Proceedings 68th Canadian Geotechnical Conference and 7th Canadian Conference on Permafrost). Québec. GEOQuébec 2015 Organizing Committee.

Romanovsky, V. E., S. L. Smith, N. I. Shiklomanov, D. A. Streletskiy, K. Isaksen, A. L. Kholodov, H. H. Christiansen, D. S. Drozdov, G. V. Malkova, and S. S. Marchenko, 2017: [Arctic] Terrestrial Permafrost [in “State of the Climate in 2016”]. Bulletin of the American Meteorological Society (supplement), 98(8): S147-S151.

Smith, S. L., A. G. Lewkowicz, C. Duchesne, and M. Ednie, 2015: Variability and change in permafrost thermal state in northern Canada. Paper 237. In GEOQuébec 2015 (Proceedings 68th Canadian Geotechnical Conference and 7th Canadian Conference on Permafrost). Québec. GEOQuébec 2015 Organizing Committee.

Smith, S. L., J. Chartrand, C. Duchesne, and M. Ednie, 2016: Report on 2015 field activities and collection of ground thermal and active layer data in the Mackenzie Corridor, Northwest Territories, Geological Survey of Canada Open File 8125.

Groundfish Fisheries in the Eastern Bering Sea

Cheung, W. W. L., R. D. Brodeur, T. A. Okey, and D. Pauly, 2015: Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in Oceanography, 130, 19-31.

FAO, 2017: FAO Global Capture Production database updated to 2015 – Summary information.

Federal Register, 2017: Final 2017 Overfishing Level (OFL), Acceptable Biological Catch (ABC), Total Allowable Catch (TAC), Initial TAC (ITAC), And CDQ Reserve Allocation Of Groundfish In The BSAI. Vol. 82, No. 37.

Fissel, B., M. Dalton, R. Felthoven, B. Garber-Yonts, A. Haynie, S. Kasperski, J. Lee, D. Lew, A. Santos, C. Seung, and K. Sparks, 2016: Stock Assessment and Fishery Evaluation Report for the Groundfish Fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands Area: Economic Status of the Groundfish Fisheries Off Alaska, 2015. Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Haynie, A., and L. Pfeiffer, 2013: Climatic and economic drivers of the Bering Sea walleye pollock (Theragra chalcogramma) fishery: implications for the future. Canadian Journal of Fisheries and Aquatic Science, 70(April), 841-853.

Heintz, R. A., E. Farley, and E. C. Siddon, 2013b: Fall condition of YOY predicts recruitment of age-1 walleye pollock. In: Ecosystem Considerations 2013, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Heintz, R. A., E. C. Siddon, E. V. Farley Jr., and J. M. Napp, 2013: Correlation between recruitment and fall condition of age-0 walleye pollock (Theragra chalcogramma) from the eastern Bering Sea under varying climate conditions. Deep Sea Res Part II: Top Stud Oceanogr, 94, 150-156.

Hermann, A. J., G. A. Gibson, N. A. Bond, E. N. Curchitser, K. Hedstrom, W. Cheng, M. Wang, E. D. Cokelet, and P. J. Stabeno, 2016: Projected future biophysical states of the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134, 30-47.

Hunt, Jr., G. L., P. Stabeno, G. Walters, E. Sinclair, R. D. Brodeur, J. M. Napp, and N. A. Bond, 2002: Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 49(26), 5821-5853.

Hunt, Jr., G. L., K. O. Coyle, L. B. Eisner, E. V. Farley, R. A. Heintz, F. Mueter, J. M. Napp, J. E. Overland, P. H. Ressler, S. Salo, and P. J. Stabeno, 2011: Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science, 68(6), 1230-1243.

Ianelli, J., K. K. Holsman, A. E. Punt, and et al., 2016b: Multi-model inference for incorporating trophic and climate uncertainty into stock assessments. Deep Sea Research Part II: Topical Studies in Oceanography, 134, 379-389.

Ianelli, J. N., T. Honkalehto, S. Barbeaux, B. Fissel, and S. Kotwicki, 2016: Assessment of the walleye pollock stock in the Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Mueter, F. J., N. A. Bond, J. N. Ianelli, and A. B. Hollowed, 2011: Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science, 68(6), 1284-1296.

Ortiz, I., K. Aydin, A. J. Hermann, G. A. Gibson, A. E. Punt, F. K. Wiese, and C. Boyd, 2016: Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope. Deep-Sea Research Part II: Topical Studies in Oceanography, 134, 390-412.

Pinsky, M. L., B. Worm, M. J. Fogarty, J. L. Sarmiento, and S. A. Levin, 2013: Marine taxa track local climate velocities. Science, 341(6151), 1239-1242.

Pörtner, H. O., and A. P. Farrell, 2008: Physiology and climate change. Science, 690-692.

Seung, C., and J. Ianelli, 2016:. Regional economic impacts of climate change: a computable general equilibrium analysis for an Alaskan fishery. Natural Resource Modeling, 29, 289-333.

Siddon, E. C., J. T. Duffy-Anderson, K. L. Mier, M. S. Busby, and L. B. Eisner, 2017a: Seasonal, interannual, and spatial patterns of community composition over the eastern Bering Sea shelf in cold years. Part II: ichthyoplankton and juvenile fish, ICES Journal of Marine Science, fsx123,

Siddon, E. C., et al., 2017b: (tentative title) Spatial overlap of age-0 pollock and their zooplankton prey. In: Ecosystem Considerations 2017: Status of the Eastern Bering Sea Marine Ecosystem, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Siddon, E., and S. Zador, 2017: In: Ecosystem Considerations 2017: Status of the Eastern Bering Sea Marine Ecosystem, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Sigler, M. F., J. M. Napp, P. J. Stabeno, R. A. Heintz, M. W. Lomas, and G. L. Hunt, 2016: Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134, 223-234.

Spencer, P. D., K. K. Holsman, S. Zador, et al., 2016: Modelling spatially dependent predation mortality of eastern Bering Sea walleye pollock, and its implications for stock dynamics under future climate scenarios. ICES Journal of Marine Science, 73, 1330-1342.

Stabeno, P. J., N. B. Kachel, S. E. Moore, J. M. Napp, M. Sigler, A. Yamaguchi, and A. N. Zerbini, 2012: Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 65, 31-45.

Stabeno, P. J., J. D. Schumacher, and K. Ohtani, 1999: The physical oceanography of the Bering Sea. In: Loughlin, T. R., Ohtani, K. (Eds.), Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and a Synopsis of Research on the Bering Sea, North Pacific Marine Science Organization (PICES), University of Alaska Sea Grant, AK-SG-99-03, Fairbanks, Alaska, USA, pp.1-28.

Zador, S., and E. Siddon, 2016: Ecosystem Considerations 2016: Status of the Eastern Bering Sea Marine Ecosystem, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501.

Zador, S. G., K. K. Holsman, K. Y. Aydin, and S. K. Gaichas, 2017: Ecosystem considerations in Alaska: the value of qualitative assessments. ICES Journal of Marine Science, 74(1), 421-430.

Wildland Fire in High Latitudes

Alaska Interagency Coordination Center (AICC), 2015: 2015 Fall Fire Review Statistics Summary.

Alaska Interagency Coordination Center (AICC), 2016: 2016 Alaska Fire Season.

Alaska Interagency Coordination Center (AICC), 2017: Situation Report.

Barrett, K., T. Loboda, A. D. McGuire, H. Genet, E. Hoy, and E. Kasischke, 2016: Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest. Ecosphere, 7(11), e01572, doi: 10.1002/ecs2.1572.

Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower, 2007: Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450(7166), 89-92.

French, N. H. F., L. K. Jenkins, T. V. Loboda, M. Flannigan, R. Jandt, L. L. Bourgeau-Chavez, and M. Whitley, 2015: Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire,

Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. D. Flannigan, 2004: Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211.

Johnstone, J. F., T. N. Hollingsworth, F. S. Chapin, and M. C. Mack, 2010: Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology, 16, 1281-1295, doi: 10.1111/j.1365-2486.2009.02051.x.

Jones, B., G. Grosse, C. D. Arp, E. A. Miller, L. Liu, D. J. Hayes, and C. F. Larsen, 2015: Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5. 15865, doi: 10.1038/srep15865.

Jorgenson, M. T., V. E. Romanovsky, J. Harden, Y. Shur, J. O’Donnell, E. A. G. Schuur, M. Kanevskiy, and S. Marchenko, 2010: Resilience and vulnerability of permafrost to climate change. Canadian Journal of Forest Research, 2010, 40, 7, 1219-1236.

Kasischke, E. S., K. P. O’Neill, N. H. F. French, and L. L. Bourgeau-Chavez, 2000: Controls on patterns of biomass burning in Alaskan boreal forests, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, pp 173-196, Springer: New York.

Kasischke, E. S., and M. R. Turetsky, 2006: Recent changes in the fire regime across the North American boreal region-spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33, L09703.

Lawson, B..D., and O. B. Armitage, 2008: Weather guide for the Canadian Forest Fire Danger Rating System. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB.

Liston, G. E., and C. A. Hiemstra, 2011: The changing cryosphere: Pan-Arctic snow trends (1979-2009). Journal of Climate, 24, 5691-5712.

Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin, 2005: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. Journal of Geophysical Research, 110(D13), doi: 10.1029/2004JD005158.

Mann, D. H., T. S. Rupp, M. A. Olson, and P. A. Duffy, 2012: Is Alaska’s Boreal Forest Now Crossing a Major Ecological Threshold? Arctic, Antarctic, and Alpine Research, 44, 3, 319-331.

Northwest Territories Department of Environment and Natural Resources (NWT), 2015: 2014 NWT Fire Season Review Report.

Partain, J. L., S. Alden, U. S. Bhatt, P. A. Bieniek, B. R. Brettschneider, R. T. Lader, P. Q. Olsson, T. S. Rupp, H. Strader, R. L. Thoman, J. E. Walsh, A. D. York, and R. H. Ziel, 2016: An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015 [in “Explaining Extremes of 2015 from a Climate Perspective”]. Bulletin of the American Meteorological Society, 97 (12), S14-S18, doi: 10.1175/BAMS-D-16-0149..1.

Reid, C.E., M. Brauer, F. H. Johnston, M. Jerrett, J. R. Balmes, and C. T. Elliott, 2016: Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124, 1334-1343,

Rogers, B. M., A. J. Soja, M. L. Goulden, and J. T. Randerson, 2015: Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8(3), 228-234, doi: 10.1038/ngeo2352.

Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851-854.

Scharlemann, J. P., E. V. Tanner, R. Hiederer, and V. Kapos, 2014: Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81-91.

Thomas, J. L., et al., 2017: Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 44, 7965-7974, doi: 10.1002/2017GL073701.

Turetsky, M., B. Benscoter, S. Page, G. Rein, G. R. van der Werf, and A. Watts, 2015. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11-14,. doi: 10.1038/NGEO2325.

Veraverbeke, S., B. M. Rogers, M. L. Goulden, R. R. Jandt, C. E. Miller, E. B. Wiggins, and J. T. Randerson, 2017: Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7, 529-534, doi: 10.1038/nclimate3329.

Young, A. M., P. E. Higuera, P. A. Duffy, and F. S. Hu, 2017: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography, 40, 606-617,

Yue, X., L. J. Mickley, J. A. Logan, R. C. Hudman, M. V. Martin, and R. M. Yantosca, 2015: Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmospheric Chemistry and Physics, 15, 10033-10055, doi: 10.5194/acp-15-10033-2015.

Ziel, R. H., et al., 2015: Modeling fire growth potential by emphasizing significant growth events: characterizing climatology of fire growth days in Alaska’s boreal forest. 11th Symp. on Fire and Forest Meteorology, Minneapolis MN, Amer. Meteor. Soc., 1.2. [Available online at]

Paleoceanographic Perspectives on Arctic Ocean Change

Anagnostou, E., E. H. John, K. M. Edgar, et al., 2016: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533, 380-384, doi: 10.1038/nature17423.

Beerling, D. J., and D. L Royer, 2011: Convergent Cenozoic CO2 history. Nature Geoscience, 4, 418-420, doi: 10.1038/ngeo1186.

Cronin, T. M., L. Gemery, W. M. Briggs Jr., M. Jakobsson, L. Polyak, and E. M. Brouwers, 2010: Quaternary sea-ice history in the Arctic Ocean based on a new ostracode sea-ice proxy. Quaternary Science Reviews, 29, 3415-3429.

Cronin, T. M., L. Polyak, D. Reed, E. S. Kandiano, R. E. Marzen, and E. A. Council, 2013: A 600-kyr Arctic sea-ice record from Mendeleev Ridge based on ostracodes. Quaternary Science Reviews, 79, 157-167.

Darby, D. A., L. Polyak, and H.A. Bauch, 2006: Past glacial and interglacial conditions in the Arctic Ocean and marginal seas – a review. Progress in Oceanography, 71, 129-144.

Darby, D. A., 2008: The Arctic perennial ice cover over the last 14 million years. Paleoceanography, doi: 10.1029/2007PA001479.

Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J Francey, J. -M. Barnola, and V. I. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101, 4115-4128.

Etheridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, 1998: Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research, 103, 15,979-15,993.

Hörner, T., R. Stein, K. Fahl, and D. Birgel, 2016: Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean): A high-resolution biomarker study. Quaternary Science Reviews, 143, 133-149, doi: 10.1016/j.quascirev.2016.04.011.

Jakobsson, M., K. Andreassen, L. R. Bjarnadottir, et al., 2014: Arctic Ocean glacial history. Quaternary Science Reviews, 92, 40-67, doi: 10.1016/j.quascirev.2013.07.033.

Jakobsson, M., J. Nilsson, L. Anderson, et al., 2016: Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nature Communications, 7, 10365, doi: 10.1038/ncomms10365.

Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, 2011: Reconstructed change in Arctic sea ice over the last 1,450 years. Nature, 479, 509-512, doi: 10.1038/nature10581.

McKay, N. P., and D. S. Kaufman, 2014: An extended Arctic proxy temperature database for the past 2,000 years. Scientific Data, 1, 140026, doi: 10.1038/sdata.2014.26.

Marzen, R. E., L. H. DeNinno, and T. M. Cronin, 2016: Calcareaous microfossil-based orbital cyclostratigraphy in the Arctic. Quaternary Science Reviews, 149, 109-121.

Müller, J., K. Werner, R. Stein, K. Fahl, M. Moros, and E. Jansen, 2012: Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternary Science Reviews, 47, 1-14, doi: 10.1016/j.quascirev.2012.04.024.

O’Regan, M., K. St. John, K. Moran, et al., 2010: Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge. Quaternary International, 219, 169-176, doi: 10.1016/j.quaint.2009.08.010.

Polyak, L., R. B. Alley, J. T. Andrews, et al., 2010: History of sea ice in the Arctic. Quaternary Science Reviews, 29, 1757-1778.

Polyak, L., K. Best, K. Crawford, E. Council, and G. St-Onge, 2013: Quaternary history of sea ice in the western Arctic Ocean based on foraminifera. Quaternary Science Reviews, 79, 145-156.

Polyak, L., S. T. Belt, P. Cabedo-Sanz, M. Yamamoto, and Y. -H. Park, 2016: Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies. The Holocene, 26, 1810-1821, doi: 10.1177/0959683616645939.

St. John, K., 2008: Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge. Paleoceanography, 23, PA1S05.

Spielhagen, R. F., K. Werner, S. A. Sorensen, et al., 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 311, 450-453.

Stein, R., K. Fahl, and J. Muller, 2012: Proxy reconstruction of Arctic Ocean sea ice history: ‘From IRD to IP25‘. Polarforschung, 82, 37-71.

Stein, R., K. Fahl, I. Schade, A. Manerung, S. Wassmuth, F. Niessen, S. -I. Nam, 2017: Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). Journal of Quaternary Science, 32, 362-379.

Stickley, C. E., K. St. John, N. Koç, R. W. Jordan, S. Passchier, R. B. Pearce, and L. E. Kearns, 2009: Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460, 376-379.

Vare, L. L., G. Masse, T. R. Gregory, C. W. Smart, and S. T. Belt, 2009: Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quaternary Science Reviews, 28, 1354-1366, doi: 10.1016/j.quascirev.2009.01.013.

Werner, K., R. F. Spielhagen, D. Bauch, H. C. Hass, and E. Kandiano, 2013: Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene. Paleoceanography, 28, 283-295, doi: 10.1002/palo.20028.

Woodgate, R. A., T. J. Weingartner, and R. Lindsay, 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophysical Research Letters, 37, L01602.

Zhang, Y. G., M. Pagani, Z. Liu, S. M. Bohaty, and R. DeCanto, 2013: A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A, 371, 20130096, doi: 10.1098/rsta.2013.0096.

Collecting Environmental Intelligence in the New Arctic

Alessa, L., A. Kliskey, J. Gamble, M. Fidel, G. Beaujean, and J. Gosz, 2015: The role of Indigenous science and local knowledge in integrated observing systems: moving toward adaptive capacity indices and early warning systems. Sustain Sci., 11, 91-102, doi: 10.1007/s11625-015-0295-7.

Bednaršek, N., G. A. Tarling, D. C. E. Bakker, S. Fielding, and R. A Feely, 2014: Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS One, 9(10), e109183.

Evans, W., J. T. Mathis, and J. N. Cross, 2014: Calcium carbonate corrosivity in an Alaskan Inland Sea. Biogeosciences, 11, 365–379, doi: 10.5194/bg-11-365-2014.

Evans, W., J. T. Mathis, J. Ramsey, and J. Hetrick, 2015: On the frontline: Tracking CaCO3 corrosivity in an Alaskan shellfish hatchery. PLoS One, 10(7), e0130384, doi: 10.1371/journal.pone.0130384.

Frisch, L. C., J. T. Mathis, N. P. Kettle, and S. Trainor, 2014: Gauging perceptions of ocean acidification in Alaska. Marine Policy, 53, 101-110, doi: 10.1016/j.marpol.2014.11.022.

IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks. 2017: International Arctic Observations Assessment Framework. IDA Science and Technology Policy Institute, Washington, DC, U.S.A., and Sustaining Arctic Observing Networks, Oslo, Norway, 73 pp.

Mathis, J. T., S. R. Cooley, N. Lucey, S. Colt, J. Ekstrom, T. Hurst, C. Hauri, W. Evans, J. N. Cross, and R. A. Feely, 2015a: Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography, 136, 71-91, doi: 10.1016/j.pocean.2014.07.001

Mathis, J. T., J. N. Cross, W. Evans, and S. Doney, 2015b: Ocean acidification in the surface waters of the Pacific-Arctic boundary regions. Oceanography, 28(2), 122-135, doi: 10.5670/oceanog.2015.36.

Siedlecki, S. A., D. J. Pilcher, A. J. Hermann, K. Coyle, and J. Mathis, 2017: The importance of freshwater to spatial variability of aragonite saturation state in the Gulf of Alaska. Journal of Geophysical Research: Oceans, 122,

Scroll to Top

Contact Our Team

Fill out the form below, and we will be in touch shortly.
Contact Information
Vehicle Information
Preferred Date and Time Selection