Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Arctic Report Card: Update for 2019
Arctic ecosystems and communities are increasingly at risk due to continued warming and declining sea ice
Archive of previous Arctic Report Cards
2019 Arctic Report Card

References

Surface Air Temperature

Acosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, H. -C. Hansson, and A. M. L. Ekman, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci., 9, 277-281.

Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic. J. Climate, 29, 5061-5081.

Kim, B. -M., J. -Y. Hong, S. -Y. Jun, X. Zhang, H. Kwon, S. -J. Kim, J. -H. Kim, S. -W. Kim, and H. -K. Kim, 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of Atlantic windstorm. Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051.

Mahlstein, I., and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2°C global warming above present. J. Geophys. Res. Atmos., 117, D06104, https://doi.org/10.1029/2011JD016709.

Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747-750, https://doi.org/10.1126/science.aag2345.

Overland, J. E., 2009: The case for global warming in the Arctic. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, J. C. J. Nihoul and A. G. Kostianoy, Eds., Springer, 13-23.

Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181-184, https://doi.org/10.1038/ngeo2071.

Stuecker, M. F., C. M. Bitz, K. C. Armour, C. Proistosescu, S. M. Kang, S. -P. Xie, D. Kim, S. McGregor, W. Zhang, S. Zhao, W. Cai, Y. Dong, and F. -F. Jin, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 1076-1081, https://doi.org/10.1038/s41558-018-0339-y.

Terrestrial Snow Cover

Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726-740.

Brown, R., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean., 41, 1-14.

Brown, R., D. Vikhamar Schuler, O. Bulygina, C. Derksen, K. Luojus, L. Mudryk, L. Wang, and D. Yang, 2017: Arctic terrestrial snow cover. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 25-64.

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203-219, https://doi.org/10.1175/JHM-D-12-012.1.

Callaghan, T., M. Johansson, R. Brown, P. Groisman, N. Labba, V. Radionov, R. Barry, O. Bulygina, R. Essery, D Frolov, V. Golubev, T. Grenfell, M. Petrushina, V. Razuvaev, D. Robinson, P. Romanov, D. Shindell, A. Shmakin, S. Sokratov, S. Warren, and D. Yang, 2011: The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio, 40, 17-31.

Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Sys. Sci. Data, 7(1), 137-142.

Helfrich, S., D. McNamara, B. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21, 1576-1586.

Reichle, R., C. Draper, Q. Liu, M. Girotto, S. Mahanama, R. Koster, and G. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30(8), 2937–2960, https://doi.org/10.1175/JCLI-D-16-0720.1.

Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J-P Kärnä, and J. Koskinen, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 3517-3529.

Greenland Ice Sheet

Andersen, J. K., R. S. Fausto, K. Hansen, J. E. Box, S. B. Andersen, A. P. Ahlstrøm, D. van As, M. Citterio, W. Colgan, N. B. Karlsson, K. K. Kjeldsen, N. J. Korsgaard, S. H. Larsen, K. D. Mankoff, A. Ø. Pedersen, C. L. Shields, A. Solgaard, and B. Vandecrux, 2019: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999-2018). Geol. Surv. Den. Greenl., 43, e2019430202, https://doi.org/10.34194/GEUSB-201943-02-02.

Box, J. E., D. van As, and K. Steffen, 2017: Greenland, Canadian and Icelandic land ice albedo grids (2000-2016). Geol. Surv. Den. Greenl., 38, 53-56.

Cape, M. R., F. Straneo, N. Beaird, R. M. Bundy, and M. A. Charette, 2019: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nat. Geosci., 12, 34–39, https://doi.org/10.1038/s41561-018-0268-4.

Hopwood, M. J., D. Carroll, T. J. Browning, L. Meire, J. Mortensen, S. Krisch, and E. P. Achterberg, 2018: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8.

Loomis, B. D., S. B. Luthcke, and T. J. Sabaka, 2019a: Regularization and error characterization of GRACE mascons. J. Geodesy, 93(9), 1381-1398, https://doi.org/10.1007/s00190-019-01252-y.

Loomis, B. D., K. E. Rachlin, and S. B. Luthcke, 2019b: Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett., 46, 6910- 6917, https://doi.org/10.1029/2019GL082929.

Luo, H., R. M. Castelao, A. K. Rennermalm, M. Tedesco, A. Bracco, P. L. Yager, and T. L. Mote, 2016: Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci., 9(7), 528-532, https://doi.org/10.1038/ngeo2708.

Luthcke, S. B., T. J. Sabaka, B. D. Loomis, A. A. Arendt, J. J. McCarthy, and J. Camp, 2013: Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59(216), 613-631, https://doi.org/10.3189/2013JoG12J147.

Mankoff, K. D., W. Colgan, A. Solgaard, N. B. Karlsson, A. P. Ahlstrøm, D. van As, J. E. Box, S. A. Khan, K. K. Kjeldsen, J. Mouginot, and R. S. Fausto, 2019: Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth Syst. Sci. Data, 11, 769-786, https://doi.org/10.5194/essd-11-769-2019. Data product updated through 2019-08-16 at http://promice.org.

Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11051-11061, https://doi.org/10.1002/2017GL074954.

Mote, T., 2007: Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507.

Mouginot, J., E. Rignot, A. A. Bjørk, M. van den Broeke, R. Millan, M. Morlighem, B. Noël, B. Scheuchl, and M. Wood, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. P. Natl. Acad. Sci. USA, 116(19), 9239-9244, https://doi.org/10.1073/pnas.1904242116.

Overeem, I., B. D. Hudson, J. P. M. Syvitski, A. B. Mikkelsen, B. Hasholt, M. R. Van Den Broeke, B. P. Y. Noël, and M. Morlighem, 2017: Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci., 10(11), 859-863, https://doi.org/10.1038/ngeo3046.

Ryan, J. C., L. C. Smith, D. van As, S. W. Cooley, M. G. Cooper, L. H. Pitcher, and A. Hubbard, 2019: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci Adv., 5(3), eaav3738, https://doi.org/10.1126/sciadv.aav3738.

Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615-630.

van As, D., R. S. Fausto, J. Cappelen, R. S. van de Wal, R. J. Braithwaite, and H. Machguth, 2016: Placing Greenland ice sheet ablation measurements in a multi-decadal context. Geol. Surv. Den. Greenl., 35, 71-74.

Wahr, J., M. Molenaar, and F. Bryan, 1998: Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103( B12), 30205- 30229, https://doi.org/10.1029/98JB02844.

Sea Ice

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996, updated yearly: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/8GQ8LZQVL0VL.

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3: Regional Daily Data. National Snow and Ice Data Center (NSIDC), Boulder, CO, USA, https://doi.org/10.7265/N5K072F8.

Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958 – 2018). Environ. Res. Lett., 13 (2018), 105005, https://doi.org/10.1088/1748-9326/aae3ec.

Maslanik, J., and J. Stroeve, 1999: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/U8C09DWVX9LM.

Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38(13), L13502, https://doi.org/10.1029/2011GL047735.

Meier, W. N., G. Hovelsrud, B. van Oort, J. Key, K. Kovacs, C. Michel, M. Granskog, S. Gerland, D. Perovich, A. P. Makshtas, and J. Reist, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52(3), 185-217, https://doi.org/10.1002/2013RG000431.

NSIDC, March 2019: Arctic Sea Ice News and Analysis. Arctic sea ice maximum ties for seventh lowest in satellite record. http://nsidc.org/arcticseaicenews/2019/03/.

Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017.

Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: EASE-Grid Sea Ice Age, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/UTAV7490FEPB.

Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook Arctic Weekly EASE-Grid Sea Ice Age, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/2XXGZY3DUGNQ.

Tschudi, M. A., C. Fowler, J. A. Maslanik, and J. A. Stroeve, 2010: Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 3(4), 536-540, https://doi.org/10.1109/JSTARS.2010.2048305.

Tschudi, M. A., J. C. Stroeve, and J. S. Stewart, 2016: Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge Campaigns. Remote Sens., 8(6), 457, https://doi.org/10.3390/rs8060457.

Sea Surface Temperature

Barton, B. I., Y. Lenn, and C. Lique, 2018: Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr., 48, 1849-1866, https://doi.org/10.1175/JPO-D-18-0003.1.

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017 (updated daily): Sea Ice Index, Version 3: Regional Daily Data. National Snow and Ice Data Center (NSIDC), Boulder, CO, USA, https://doi.org/10.7265/N5K072F8.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, and see http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res. Oceans, 120, 7223-7236, https://doi.org/0.1002/2015JC011005.

Timmermans, M. -L., and A. Proshutinsky, 2015. The Arctic: Sea surface temperature [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96(7), S147-S148.

Arctic Ocean Primary Productivity: The Response of Marine Algae to Climate Warming and Sea Ice Decline

Ardyna, M., M. Babin, E. Devred, A. Forest, M. Gosselin, P. Raimbault, and J. -É. Tremblay, 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr., 62, 2113-2132, https://doi.org/10.1002/lno.10554.

Barber, D. G., H. Hop, C. J. Mundy, B. Else, I. A. Dmitrenko, J. -É. Tremblay, J. K. Ehn, P. Assmy, M. Daase, L. M. Candlish, and S. Rysgaard, 2015: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr., 139, 122-150, https://doi.org/10.1016/j.pocean.2015.09.003.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20.

Comiso, J. C., 2015: Variability and trends of the global sea ice covers and sea levels: Effects on physicochemical parameters. Climate and Fresh Water Toxins, L. M. Botana, M. Carmen Lauzao, and N. Vilarino, Eds., De Gruyter, Berlin, Germany.

Comiso, J. C., R. Gersten, L. Stock, J. Turner, G. Perez, and K. Cho, 2017a: Positive trends in the Antarctic sea ice cover and associated changes in surface temperature. J. Climate, 30, 2251-2267, https://doi.org/10.1175/JCLI-D-0408.1.

Comiso, J. C., W. N. Meier, and R. Gersten, 2017b: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Oceans, 122, 6883-6900, https://doi.org/10.1002/2017JC012768.

Duffy-Anderson, J. T., P. Stabeno, A. G. Andrews III, K. Cieciel, A. Dreary, E. Farley, C. Fugate, C. Harpold, R. Heintz, D. Kimmel, K. Kuletz, J. Lamb, M. Paquin, S. Porter, L. Rogers, A. Spear, and E. Yasumiishi, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46(16), 9833-9842, https://doi.org/10.1029/2019GL083396.

Frey, K. E., J. C. Comiso, L. W. Cooper, J. M. Grebmeier, and L. V. Stock, 2018: Arctic Ocean primary productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Giesbrecht, K. E., D. E. Varela, J. Wiktor, J. M. Grebmeier, B. Kelly, and J. E. Long, 2019: A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep-Sea Res. Pt. II, 162, 93-113, https://doi.org/10.1016/j.dsr2.2018.06.010.

Hill, V., M. Ardyna, S. H. Lee, and D. E. Varela, 2018: Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep-Sea Res. Pt. II, 152, 82-94, https://doi.org/10.1016/j.dsr2.2016.12.015.

Leu, E., C. J. Mundy, P. Assmy, K. Campbell, T. M. Gabrielsen, M. Gosselin, T. Juul-Pedersen, and R. Gradinger, 2015: Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr., 139, 151-170, https://doi.org/10.1016/j.pocean.2015.07.012.

Moore, S. E., and J. M. Grebmeier, 2018: The distributed biological observatory: Linking physics to biology in the Pacific Arctic region. Arctic, 71(Suppl. 1), 1-7, https://doi.org/10.14430/arctic4606.

Neeley, A. R., L. A. Harris, and K. E. Frey, 2018: Unraveling phytoplankton community dynamics in the northern Chukchi and western Beaufort seas amid climate change. Geophys. Res. Lett., 45(15), 7663-7671, https://doi.org/10.1029/2018GL077684.

Stabeno, P., and S. W. Bell, 2019: Extreme conditions in the Bering Sea (2017-2018): Record-breaking low sea-ice extent. Geophys. Res. Lett., 46, 8952-8959, https://doi.org/10.1029/2019GL083816.

Tremblay J. -É., L. G. Anderson, P. Matrai, S. Bélanger, C. Michel, P. Coupel, and M. Reigstad, 2015: Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr., 139, 171-196, https://doi.org/10.1016/j.pocean.2015.08.009.

Tundra Greenness

Addis, C. E., and M. S. Bret-Harte, 2019: The importance of secondary growth to plant responses to snow in the arctic. Funct. Ecol., 33, 1050-1066.

Assmann, J. J., I. H. Myers-Smith, A. B. Phillimore, A. D. Bjorkman, R. E. Ennos, J. S. Prevéy, G. H. R. Henry, N. M. Schmidt, and R. D. Hollister, 2019: Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra. Glob. Change Biol., 25, 2258–2274, https://doi.org/10.1111/gcb.14639.

Bhatt, U. S., D. A. Walker, M. K. Raynolds, P. A. Bieniek, H. E. Epstein, J. C. Comiso, J. E. Pinzon, C. J. Tucker, M. Steele, W. Ermold, and J. Zhang, 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett., 12, 055003.

Bhatt, U., D. Walker, M. Raynolds, P. Bieniek, H. Epstein, J. Comiso, J. Pinzon, C. Tucker, and I. Polyakov, 2013: Recent declines in warming and vegetation greening trends over Pan-Arctic tundra. Remote Sens., 5, 4229-4254.

Blume-Werry, G., A. Milbau, L. M. Teuber, M. Johansson, and E. Dorrepaal, 2019: Dwelling in the deep – strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol., 223, 1328-1339.

Chen, C., T. Park, X. Wang, S. Piao, B. Xu, R. K. Chaturvedi, R. Fuchs, V. Brovkin, P. Ciais, R. Fensholt, H. Tømmervik, G. Bala, Z. Zhu, R. R. Nemani, and R. B. Myneni, 2019: China and India lead in greening of the world through land-use management. Nat. Sustain., 2, 122-129.

Cooper, E. J., C. J. Little, A. K. Pilsbacher, and M. A. Mörsdorf, 2019: Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci., 30, 857-867.

Cray, H. A., and W. H. Pollard, 2018: Use of stabilized thaw slumps by Arctic birds and mammals: evidence from Herschel Island, Yukon. Can. Field Nat., 132, 279-284.

Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, N. Boulanger-Lapointe, E. J. Cooper, J. H. C. Cornelissen, T. A. Day, E. Dorrepaal, T. G. Elumeeva, M. Gill, W. A. Gould, J. Harte, D. S. Hik, A. Hofgaard, D. R. Johnson, J. F. Johnstone, I. S. Jónsdóttir, J. C. Jorgenson, K. Klanderud, J. A. Klein, S. Koh, G. Kudo, M. Lara, E. Lévesque, B. Magnússon, J. L. May, J. A. Mercado-Díaz, A. Michelsen, U. Molau, I. H. Myers-Smith, S. F. Oberbauer, V. G. Onipchenko, C. Rixen, N. Martin Schmidt, G. R. Shaver, M. J. Spasojevic, Þ. E. Þórhallsdóttir, A. Tolvanen, T. Troxler, C. E. Tweedie, S. Villareal, C. -H. Wahren, X. Walker, P. J. Webber, J. M. Welker, and S. Wipf, 2012: Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Climate Change, 2, 453-457.

French, N. H. F., M. A. Whitley, and L. K. Jenkins, 2016: Fire disturbance effects on land surface albedo in Alaskan tundra. J. Geophys.Res.-Biogeosci., 12, 841-854.

Hewitt, R. E., D. L. Taylor, H. Genet, A. D. McGuire, and M. C. Mack, 2019: Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. J. Ecol., 107, 950-962.

Ims, R. A., J. -A. Henden, M. A. Strømeng, A. V. Thingnes, M. J. Garmo, and J. U. Jepsen, 2019: Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Change, 9, 607-610.

Jorgenson, J. C., M. K. Raynolds, J. H. Reynolds, and A. -M. Benson, 2015: Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarct. Alp. Res., 47, 785-806.

Kemppinen, J., P. Niittynen, J. Aalto, P. C. le Roux, and M. Luoto, 2019: Water as a resource, stress and disturbance shaping tundra vegetation. Oikos, 128, 811-822.

Kolari, T. H. M., T. Kumpula, M. Verdonen, B. C. Forbes, and T. Tahvanainen, 2019: Reindeer grazing controls willows but has only minor effects on plant communities in Fennoscandian oroarctic mires. Arct. Antarct. Alp. Res., 51, 506-520.

Lara, M. J., I. Nitze, G. Grosse, P. Martin, and A. D. McGuire, 2018: Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep.-UK, 8, 2345.

Lucht, W., 2002: Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689.

Miles, M. W., V. V. Miles, and I. Esau, 2019: Varying climate response across the tundra, forest-tundra and boreal forest biomes in northern West Siberia. Environ. Res. Lett., 14, 075008.

Mörsdorf, M. A., N. S. Baggesen, N. G. Yoccoz, A. Michelsen, B. Elberling, P. L. Ambus, and E. J. Cooper, 2019: Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem., 135, 222-234.

Mudryk, L., R. Brown, C. Derksen, K. Luojus, B. Decharme, and S. Helfrich, 2018: Terrestrial snow cover. Arctic Report Card 2018, E. Osborne, J. Richter-Menge, and M. Jeffries, Eds., https://www.arctic.noaa.gov/Report-Card.

Myers-Smith, I. H., S. C. Elmendorf, P. S. A. Beck, M. Wilmking, M. Hallinger, D. Blok, K. D. Tape, S. A. Rayback, M. Macias-Fauria, B. C. Forbes, J. D. M. Speed, N. Boulanger-Lapointe, C. Rixen, E. Lévesque, N. M. Schmidt, C. Baittinger, A. J. Trant, L. Hermanutz, L. S. Collier, M. A. Dawes, T. C. Lantz, S. Weijers, R. H. Jørgensen, A. Buchwal, A. Buras, A. T. Naito, V. Ravolainen, G. Schaepman-Strub, J. A. Wheeler, S. Wipf, K. C. Guay, D. S. Hik, and M. Vellend, 2015: Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change, 5, 887-891.

Myers-Smith, I. H., M. M. Grabowski, H. J. D. Thomas, S. Angers-Blondin, G. N. Daskalova, A. D. Bjorkman, A. M. Cunliffe, J. J. Assmann, J. S. Boyle, E. McLeod, S. McLeod, R. Joe, P. Lennie, D. Arey, R. R. Gordon, and C. D. Eckert, 2019: Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr., 89, e01351.

Myers-Smith, I. H., and D. S. Hik, 2018: Climate warming as a driver of tundra shrubline advance. R. Aerts, Ed. J. Ecol., 106, 547-560.

National Academies of Sciences, Engineering, and Medicine, 2019: Understanding northern latitude vegetation greening and browning: proceedings of a workshop. A. Melvin, Ed. The National Academies Press, Washington, DC.

Park, T., S. Ganguly, H. Tømmervik, E. S. Euskirchen, K. -A. Høgda, S. R. Karlsen, V. Brovkin, R. R. Nemani, and R. B. Myneni, 2016: Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett., 11, 084001.

Pastick, N. J., M. T. Jorgenson, S. J. Goetz, B. M. Jones, B. K. Wylie, B. J. Minsley, H. Genet, J. F. Knight, D. K. Swanson, and J. C. Jorgenson, 2019: Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol., 25, 1171-1189.

Pattison, R. R., J. C. Jorgenson, M. K. Raynolds, and J. M. Welker, 2015: Trends in NDVI and tundra community composition in the arctic of NE Alaska between 1984 and 2009. Ecosystems, 18, 707-719.

Pinzon, J., and C. Tucker, 2014: A Non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929-6960.

Prevéy, J. S., C. Rixen, N. Rüger, T. T. Høye, A. D. Bjorkman, I. H. Myers-Smith, S. C. Elmendorf, I. W. Ashton, N. Cannone, C. L. Chisholm, K. Clark, E. J. Cooper, B. Elberling, A. M. Fosaa, G. H. R. Henry, R. D. Hollister, I. S. Jónsdóttir, K. Klanderud, C. W. Kopp, E. Lévesque, M. Mauritz, U. Molau, S. M. Natali, Steven. F. Oberbauer, Z. A. Panchen, E. Post, S. B. Rumpf, N. M. Schmidt, E. Schuur, P. R. Semenchuk, J. G. Smith, K. N. Suding, Ø. Totland, T. Troxler, S. Venn, C. -H. Wahren, J. M. Welker, and S. Wipf, 2019: Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol., 3, 45-52.

Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403-411.

Rocha, A. V., B. Blakely, Y. Jiang, K. S. Wright, and S. R. Curasi, 2018: Is arctic greening consistent with the ecology of tundra? Lessons from an ecologically informed mass balance model. Environ. Res. Lett., 13, 125007.

Salmon, V. G., A. L. Breen, J. Kumar, M. J. Lara, P. E. Thornton, S. D. Wullschleger, and C. M. Iversen, 2019: Alder distribution and expansion across a tundra hillslope: implications for local N cycling. Front. Plant Sci., 10, 1099, https://doi.org/10.3389/fpls.2019.01099.

Schmidt, N. M., J. Reneerkens, J. H. Christensen, M. Olesen, and T. Roslin, 2019: An ecosystem-wide reproductive failure with more snow in the Arctic. PLOS Biol., 17, e3000392.

Tape, K. D., B. M. Jones, C. D. Arp, I. Nitze, and G. Grosse, 2018: Tundra be dammed: Beaver colonization of the Arctic. Glob. Change Biol., 24, 4478-4488.

Taylor, A. R., R. B. Lanctot, and R. T. Holmes, 2018: An evaluation of 60 years of shorebird response to environmental change at Utqiaġvik (Barrow), Alaska. Trends and Traditions: Avifaunal Change in Western North America, W. D. Shuford, R. E. Gill, and C. M. Handel, Eds., Western Field Ornithologists, 312-330, accessed 24 September 2019, http://www.wfopublications.org/Avifaunal_Change/Taylor.

Tømmervik, H., J. W. Bjerke, T. Park, F. Hanssen, and R. B. Myneni, 2019: Legacies of historical exploitation of natural resources are more important than summer warming for recent biomass increases in a boreal-arctic transition region. Ecosystems, 22, 1512, https://doi.org/10.1007/s10021-019-00352-2.

Treharne, R., J. W. Bjerke, H. Tømmervik, L. Stendardi, and G. K. Phoenix, 2019: Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol., 25, 489-503.

Verbyla, D., and T. A. Kurkowski, 2019: NDVI-Climate relationships in high-latitude mountains of Alaska and Yukon Territory. Arct. Antarct. Alp. Res., 51, 397-411.

Wilcox, E. J., D. Keim, T. de Jong, B. Walker, O. Sonnentag, A. E. Sniderhan, P. Mann, and P. Marsh, 2019: Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci., https://doi.org/10.1139/as-2018-0028.

Permafrost and the Global Carbon Cycle

Anthony, K. M. W., and Coauthors, 2014: A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452, https://doi.org/10.1038/Nature13560.

Belshe, F. E., A. G. Schuur, and B. M. Bolker, 2013: Tundra ecosystems observed to be carbon dioxide sources due to differential amplification of the carbon cycle. Ecol. Lett., https://doi.org/10.1111/ele.12164.

Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nat. Commun., 10(1), 264, https://doi.org/10.1038/s41467-018-08240-4.

Commane, R., and Coauthors, 2017: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. P. Natl. Acad. Sci. USA, 114(21), 5361-5366, https://doi.org/10.1073/pnas.1618567114.

Hugelius, G., and Coauthors, 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573-6593, https://doi.org/10.5194/bg-11-6573-2014.

Jobbágy, E. G., and R. B. Jackson, 2000: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10(2), 423-436, https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

Lund, M., and Coauthors, 2010: Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol., 16(9), 2436-2448, https://doi.org/10.1111/j.1365-2486.2009.02104.x.

McGuire, A. D., T. R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J. S. Kimball, C. Koven, P. Lafleur, P. A. Miller, W. Oechel, P. Peylin, M. Williams, and Y. Yi, 2012: An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences, 9(8), 3185-3204, https://doi.org/10.5194/bg-9-3185-2012.

Natali, S., and Coauthors, 2019: Large loss of CO2 in winter observed across pan-Arctic permafrost region. Nat. Climate Change, 9, 852-857, https://doi.org/10.1038/s41558-019-0592-8.

Parazoo, N. C., R. Commane, S. C. Wofsy, C. D. Koven, C. Sweeney, D. M. Lawrence, J. Lindaas, R. Y. -W. Chang, and C. E. Miller, 2016: Detecting regional patterns of changing CO2 flux in Alaska. P. Natl. Acad. Sci. USA, 113(28), 7733-7738, https://doi.org/10.1073/pnas.1601085113.

Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701-714.

Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171-179, https://doi.org/10.1038/nature14338.

Schuur, E. A. G., and Coauthors, 2018: Chapter 11: Arctic and boreal carbon. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report, Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu, Eds., U.S. Global Change Research Program, Washington, DC, USA, 428-468.

Schuur, T., and G. Hugelius, 2016: Terrestrial carbon cycle. Arctic Report Card 2016, J. Richter-Menge, J. E. Overland, and J. Mathis, Eds. http://www.arctic.noaa.gov/Report-Card.

Strauss, J., L. Schirrmeister, G. Grosse, S. Wetterich, M. Ulrich, U. Herzschuh, and H. -W. Hubberten, 2013: The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res.Lett., 40, 6165-6170, https://doi.org/10.1002/2013gl058088.

Strauss, J., L. Schirrmeister, G. Grosse, D. Fortier, G. Hugelius, C. Knoblauch, V. Romanovsky, C. Schädel, T. Schneider von Deimling, E. A. G. Schuur, D. Shmelev, M. Ulrich, and A. Veremeeva, 2017: Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev., 172, 75-86, https://doi.org/10.1016/j.earscirev.2017.07.007.

Treat, C. C., M. E. Marushchak, C. Voigt, Y. Zhang, Z. Tan, Q. Zhuang, T. A. Virtanen, A. Räsänen, C. Biasi, G. Hugelius, D. Kaverin, P. A. Miller, M. Stendel, V. Romanovsky, F. Rivkin, P. J. Martikainen, and N. J. Shurpali, 2018: Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Glob. Change Biol., 24, 5188-5204, https://doi.org/10.1111/gcb.14421.

Ivory Gull: Status, Trends and New Knowledge

BirdLife International, 2018: Pagophila eburnea. The IUCN Red List of Threatened Species 2018: e.T22694473A132555020. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694473A132555020.en. Downloaded on 10 September 2019.

Bond, A. L., K. A. Hobson, and B. A. Branfireun, 2015: Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record. Proc. R. Soc. B-Biol. Sci., 282(1805), 20150032, https://doi.org/10.1098/rspb.2015.0032.

Bourne, E. C., G. Bocedi, J. M. J. Travis, R. J. Pakeman, R. W. Brooker, and K. Schiffers, 2014: Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc. R. Soc. B-Biol. Sci., 281, 20132795.

Braune, B. M., M. L. Mallory, and H. G. Gilchrist, 2006: Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Mar. Pollut. Bull., 52(8), 978-982.

Gaston, A. J., M. L. Mallory, and G. H. Gilchrist, 2012: Populations and trends of Canadian Arctic seabirds. Polar Biol., 35(8), 1221-1232.

Gavrilo, M. V., and D. M. Martynova, 2017: Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List. Nat. Conserv. Res., 2(Suppl. 1), 10–42, https://doi.org/10.24189/ncr.2017.01 (in Russian with English summary).

Gilchrist, G., and M. L. Mallory, 2005: Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol. Conserv., 121, 303-309.

Gilchrist, G., H. Strøm, M. V. Gavrilo, and A. Mosbech, 2008: International Ivory Gull Conservation Strategy and Action Plan. Circumpolar Seabird Group (CBird). CAFF (Conservation of Arctic Flora and Fauna) Technical Report No. 18. 20 pp.

Gilg, O., D. Boertmann, F. Merkel, A. Aebischer, and B. Sabard, 2009: Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol., 32, 1275-1286.

Gilg, O., H. Strøm, A. Aebischer, M. Gavrilo, A. Volkov, C. Miljeteig, and B. Sabard, 2010: Post-breeding movements of northeast Atlantic ivory gull Pagophila eburnea populations. J. Avian Biol., 41, 532-542.

Gilg, O., L. Istomina, G. Heygster, H. Strøm, M. V. Gavrilo, M. L. Mallory, G. Gilchrist, A. Aebischer, B. Sabard, M. Huntemann, A. Mosbech, A., and G. Yannic, 2016: Living on the edge of a shrinking habitat: the ivory gull, Pagophila eburnea, an endangered sea-ice specialist. Biol. Lett., 12, 20160277, https://doi.org/10.1098/rsbl.2016.0277.

Krabbenhoft D. P., and E. M. Sunderland, 2013: Global change and mercury. Science, 341, 1457-1458, https://doi.org/10.1126/science.1242838.

Lucia, M., N. Verboven, H. Strøm, C. Miljeteig, M. V. Gavrilo, B. M. Braune, D. Boertmann, and G. W. Gabrielsen, 2015: Circumpolar contamination in eggs of the high-arctic ivory gull Pagophila eburnea. Environ. Toxicol. Chem., 34 (7), 1552-1561.

Lucia, M., H. Strøm, P. Bustamante, and G. W. Gabrielsen, 2016: Trace element accumulation in relation to the trophic behaviour of endangered ivory gulls (Pagophila eburnea) during their stay at a breeding site in Svalbard. Arch. Environ. Contam. Toxicol., 71(4), 518-529, https://doi.org/10.1007/s00244-016-0320-6.

Mallory M. L., I. J. Stenhouse, G. Gilchrist , G. Robertson, J. C. Haney, and S. D. Macdonald, 2008: Ivory gull (Pagophila eburnea). The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, accessed 11 February 2014. http://bna.birds.cornell.edu/BNA/species/175/

Miljeteig, C., H. Strøm, M. G. Gavrilo, A. Volkov, B. M. Jenssen, and G. W. Gabrielsen, 2009: High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environ. Sci. Tech., 43(14), 5521-5528.

Miljeteig, C., G. W. Gabrielsen, H. Strøm, M. V. Gavrilo, E. Lie, and B. M. Jensen, 2012: Eggshell thinning and decreased concentrations of vitamin E are associated with contaminants in eggs of ivory gulls. Sci. Total Environ., 431, 92-99.

Royston, S., and S. M. Carr, 2014: Conservation genetics of high-arctic Gull species at risk: I. Diversity in the mtDNA control region of circumpolar populations of the Endangered Ivory Gull (Pagophila eburnea). Mitochondrial DNA, 27(6), 3995-3999, https://doi.org/10.3109/19401736.2014.989520.

Spencer, N. C., H. G. Gilchrist, and M. L. Mallory, 2014: Annual movement patterns of endangered ivory gulls: The importance of sea ice. PLoS ONE, 9(12), e115231, https://doi.org/10.1371/journal.pone.0115231.

Spencer,s N. C., G. H. Gilchrist, H. Strøm, K. A. Allard, and M. L. Mallory, 2016: Key winter habitat of the ivory gull Pagophila eburnea in the Canadian Arctic. Endanger. Species Res., 31, 33-45, https://doi.org/10.3354/esr00747.

Strøm, H., 2013: Birds of Svalbard. Birds and Mammals of Svalbard, K. M. Kovacs and C. Lydersen, Eds., Polarhåndbok No. 13, Norwegian Polar Institute, 86-191. https://www.npolar.no/en/species/ivory-gull/.

Yannic, G., A. Aebischer, B. Sabard, and O. Gilg, 2014: Complete breeding failures in ivory gull following unusual rainy storms in North Greenland. Polar Res., 33, 22749.

Yannic, G., J. M. Yearsley, R. Sermier, C. Dufresnes, O. Gilg, A. Aebischer, M. Gavrilo, H. Strøm, M. Mallory, R. I. G. Morrison, H. G. Gilchrist, and T. Broquet, 2016: High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol., 39(2), 221-236, https://doi.org/10.1007/s00300-015-1775-z.

Recent Warming in the Bering Sea and Its Impact on the Ecosystem

Duffy-Anderson, J. T., P. Stabeno, A. G. Andrews, K. Cieciel, A. Deary, E. Farley, C. Fugate, C. Harpold, R. Heintz, D. Kimmel, K. Kuletz, J. Lamb, M. Paquin, S. Porter, L. Rogers, A. Spear, and E. Yasumiishi, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea-ice. Geophys. Res. Lett., 46(16), 9833-9842, https://doi.org/10.1029/2019GL083396.

Grebmeier, J. M., J. E. Overland, S. E. Moore, E. V. Farley, E. C. Carmack, L. W. Cooper, K. E. Frey, J. H. Helle, F. A. McLaughlin, and S. L. McNutt, 2006: A major ecosystem shift in the northern Bering Sea. Science, 311(5766), 1461-1464, https://doi.org/10. 1126/science.1121365.

Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958-2018). Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec.

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jović, J. Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343-360, https://doi.org/10.1175/BAMS-87-3-343.

Sigler, M. F., P. J. Stabeno, L. B. Eisner, J. M. Napp, and F. J. Mueter, 2014: Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995-2011. Deep-Sea Res. Pt. II, 109, 71-83, https://doi.org/10.1016/j.dsr2.2013.12.007.

Stabeno, P. J., and S. W. Bell, 2019: Extreme conditions in the Bering Sea (2017-2018): Record breaking low sea-ice extent. Geophys. Res. Lett., 46(15), 8952-8959, https://doi.org/10.1029/2019GL083816.

Stabeno, P. J., S. W. Bell, N. A. Bond, D. G. Kimmel, C. W. Mordy, and M. E. Sullivan, 2019: Distributed Biological Observatory Region 1: Physics, chemistry and plankton in the northern Bering Sea. Deep-Sea Res. Pt. II, 162, 8-21, https://doi.org/10.1016/j.dsr2.2018.11.006.

Stabeno, P. J., N. B. Kachel, S. E. Moore, J. M. Napp, M. Sigler, A. Yamaguchi, and A. N. Zerbini, 2012: Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Res. Pt. II, 65-70, 31-45, https://doi.org/10.1016/j.dsr2.2012.02.020.

Thompson, A., 2018: Shock and thaw – Alaskan sea ice just took a steep, unprecedented dive. Sci. Am., May 2, 2018, https://www.scientificamerican.com/article/shock-and-thaw-alaskan-sea-ice-just-took-a-steep-unprecedented-dive/.

US Fish & Wildlife Service, 2019: 2019 Alaska Seabird Die-off Fact Sheet 508C (revised 9 September 2019), https://www.nps.gov/subjects/aknatureandscience/upload/9Sep2019-Die-Off-USFWS-Factsheet-508C-revised-29Aug.pdf.

Comparison of Near-bottom Fish Densities Show Rapid Community and Population Shifts in Bering and Barents Seas

Alabia, I. D., J. G. Molinos, S. -I. Saitoh, T. Hirawake, T. Hirata, and F. J. Mueter, 2018: Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers. Distrib., 24, 1583-1597, https://doi.org/10.1111/ddi.12788.

Duffy-Anderson, J. T., and Coauthors, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46(16), 9833-9842, https://doi.org/10.1029/2019GL083396.

Dufrêne, M., and P. Legendre, 1997: Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345-366, https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.

Fossheim, M., R. Primicerio, E. Johannesen, R. B. Ingvaldsen, M. M. Aschan, and A.V. Dolgov, 2015a: Climate change is pushing boreal fish northwards to the Arctic: The case of the Barents Sea. Arctic Report Card 2015, M. O. Jeffries, J. Richter-Menge, and J. E. Overland, Eds., https://www.arctic.noaa.gov/Report-Card.

Fossheim, M., R. Primicerio, E. Johannesen, R. B. Ingvaldsen, M. M. Aschan, and A.V. Dolgov, 2015b: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Climate Change, 5, 673-677, https://doi.org/10.1038/nclimate2647.

Hollowed, A. B., and Coauthors, 2013: Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci., 70, 1023-1037, https://doi.org/10.1093/icesjms/fst081.

Marsh, J. M., and F. J. Mueter, 2019: Influences of temperature, predators, and competitors on polar cod (Boreogadus saida) at the southern margin of their distribution. Polar Biol., https://doi.org/10.1007/s00300-019-02575-4.

Mueter, F.J., and M. A. Litzow, 2008: Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl., 18, 309-320, https://doi.org/10.1890/07-0564.1.

Overland, J. E., M. Wang, and J. E. Box, 2019: An integrated index of recent pan-Arctic climate change. Environ. Res. Lett., 14, 035006, https://doi.org/10.1088/1748-9326/aaf665.

Pinsky, M. L., B. Worm, M. J. Fogarty, J. L Sarmiento, and S. A. Levin, 2013: Marine taxa track local climate velocities. Science, 341, 1239-1242.

Pinsky, M. L., R. L. Selden, and Z. J Kitchel, 2020 (in press): Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annu. Rev. Mar. Sci., 12, https://doi.org/10.1146/annurev-marine-010419-010916.

Stabeno, P. J., E. V. Farley Jr., N. B. Kachel, S. Moore, C. W. Mordy, J. M. Napp, J. E. Overland, A. I. Pinchuk, and M. F. Sigler, 2012: A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. Deep-Sea Res. Pt. II, 65-70, 14-30, https://doi.org/10.1016/j.dsr2.2012.02.019.

Stabeno, P. J., S. W. Bell, N. A. Bond, D. G. Kimmel, C. W. Mordy, and M. E. Sullivan, 2019: Distributed biological observatory region 1: Physics, chemistry and plankton in the northern Bering Sea. Deep Sea Res. Pt. II, 162, 8-21, https://doi.org/10.1016/j.dsr2.2018.11.006.

Stevenson, D. E., and R. R. Lauth, 2019: Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. Polar Biol., 42, 407-421, https://doi.org/10.1007/s00300-018-2431-1.

Thorson, J. T., 2019: Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res., 210, 143-161, https://doi.org/10.1016/j.fishres.2018.10.013.

Scroll to Top

Contact Our Team

Fill out the form below, and we will be in touch shortly.
Contact Information
Vehicle Information
Preferred Date and Time Selection